Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Theory  





2 Technology  





3 References  





4 External links  














Nanocell






فارسی
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The term nanocell refers to a drug delivery platform consisting of a polymer-bound chemotherapeutic drug combined with a lipid-bound anti-angiogenesis drug. Nanocells are currently being developed in the lab of Shiladitya Sengupta of MIT.

Theory

[edit]

Angiogenesis, or the formation of new blood vessels, plays a major role in the development of a tumor. After a tumor has grown to about the size of a cubic millimeter, its core becomes hypoxic, and it begins to release growth factors to recruit new blood vessels that will supply it with oxygen. Inhibiting angiogenesis has been investigated as a means of preventing tumor growth but has not proven to be fully successful, for tumor cells cut off from the blood supply can eventually develop “reactive resistance” to hypoxia. These resistant cancer cells could be killed by chemotherapeutic drugs, but once the vasculature to the tumor has been cut off, there is no way for chemotherapy to be delivered. Nanotechnology offers a way to deliver chemotherapeutic drugs and anti-angiogenic drugs in the same vehicle so that as the blood supply is shut off, chemotherapy is present to prevent any hypoxia-resistant cells from proliferating.

Technology

[edit]

Labs at MIT are in the process of developing nanocells capable of delivering both types of drugs. Each nanocell is between 120 and 200 _m in diameter and can be thought of as “a balloon within a balloon.” Inside each nanocell is a chemotherapeutic drug covalently bound to a polymer, and on the surface of each cell is a lipid coat containing an anti-angiogenic drug. The technology makes use of the fact that a tumor's blood vessels have pores 600 _m in diameter and are much leakier than normal blood vessels, which have pores only around 50 _m in diameter. The nanocells circulate in the blood, and because of their size, they leak out of blood vessels only in tumors. Once there, the nanocells are degraded by enzymes produced by the tumor. Work remains to be done to win clinical approval for the technology, but results from Sengupta's lab indicate that the nanocells are more effective and less toxic than traditional chemotherapy.

References

[edit]
[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Nanocell&oldid=941082318"

Categories: 
Drug delivery devices
Dosage forms
Hidden categories: 
Articles lacking in-text citations from April 2009
All articles lacking in-text citations
 



This page was last edited on 16 February 2020, at 14:03 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki