Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Description  





2 Usage  



2.1  Advantages  





2.2  Disadvantages  







3 Types of NPVs  



3.1  Iron lung  





3.2  Cuirass ventilator  





3.3  Exovent  





3.4  Jacket ventilator  





3.5  Positive-and-negative pressure ventilator  



3.5.1  Pulmotor  









4 References  





5 External links  














Negative pressure ventilator







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Anegative pressure ventilator (NPV) is a type of mechanical ventilator that stimulates an ill person's breathing by periodically applying negative air pressure to their body to expand and contract the chest cavity.[1][2][3][4][5][6]

Description[edit]

Iron lung cylinder (black), patient head exposed through sealed opening. Diaphragm (yellow) mechanically extends, and then retracts, varying cylinder air pressure and causing the patient's chest to expand (top), and then contract (bottom)

In most NPVs (such as the iron lung in the diagram), the negative pressure is applied to the patient's torso, or entire body below the neck, to cause their chest to expand, expanding their lungs, drawing air into the patient's lungs through their airway, assisting (or forcing) inhalation. When negative pressure is released, the chest naturally contracts, compressing the lungs, causing exhalation. In some cases, positive external pressure may be applied to the torso to further stimulate exhalation.[1][2][3][4][5][6]

Another form of NPV device (such as the Pulmotor) is placed at the patient's airway, and alternates negative pressure with positive pressure to pump air into their lungs (inhale under positive pressure), then suck it back out (exhale under negative pressure).[2][7][8][9][10]

Usage[edit]

Negative pressure ventilators, while widely used in the early-to-mid 20th Century (particularly for victims of the Polio epidemics), are now largely replaced by Positive-pressure airway ventilators, which force air (or oxygen) directly into the patient's airway.[1][2][3][4][5]

However, researchers and clinicians still find some uses for NPVs, owing to their specific advantages.[1][2]

Research and developments in artificial ventilation, both negative-pressure and positive-pressure, result in evolving assessments of the benefits and hazards of negative-pressure ventilators (NPVs). Different researchers and clinicians have made varying assessments, over time, about the primary positive and negative aspects of NPVs. A sampling includes:

Advantages[edit]

Generally, NPVs are best with patients who have neuromuscular diseases, but normal lung compliance (a measure of the lungs' ability to expand and contract).(1988: Grum & Morganroth, Journal of Intensive Care Medicine)[2] They are effective for various conditions, especially neuromuscular and skeletal disorders, particularly for long-term night-time ventilation.[1] They are effective in patients who have severe respiratory acidosis, impaired consciousness, are unable to tolerate a facial mask (due to facial deformity, or claustrophobia, or excess airway secretions), and in children.[11] Continuous external negative pressure ventilation (CENPV) was found in a 2015 study to "[improve] oxygenation under [a greater number of] physiological conditions", concurrent with lower "airway," "transpulmonary," and "intra-abdominal" pressures, than experienced with continuous positive pressure ventilation (CPPV), in study of Adult respiratory distress syndrome (ARDS) patients, possibly reducing high ARDS mortality.[12]

Disadvantages[edit]

NPVs do not work well if patient's lung compliance is decreased, or their lung resistance is increased.[2] They result in a greater vulnerability of the airway to aspiration, such as inhalation of vomit or swallowed liquids, than with intermittent positive pressure ventilation.[1] They exacerbate obstructive sleep apnea. The device is not portable and its installation may be difficult. Patients must sleep in a supine position.[13]

Types of NPVs[edit]

There are several types of NPVs, including:[1][2][3][4][5]

Iron lung[edit]

The iron lung, also known as the tank ventilator, Drinker tank or Emerson tank, was the first common pure-NPV device when it was developed in the 1920s by Drinker, Shaw and Mason. It is a large, sealed horizontal cylinder (or "tank") in which the patient lies, with their head protruding from a sealed opening at one end of the tank. An air pump or flexible diaphragm (usually motor-driven) varies the air pressure inside the tank, in continuous alternations, lowering and raising the air pressure in the cylinder. This causes the patient's chest to rise and fall, stimulating inhalation and exhalation through the patient's nose and mouth (which are outside the cylinder, exposed to ambient air pressure).[1][2][3][4][6]

Cuirass ventilator[edit]

The cuirass ventilator, also known as the chest shell, turtle shell or tortoise shell, is a more compact variation of the iron lung which only encloses the patient's torso and is sealed around their neck and waist, and depressurized and repressurized by an external pump or portable ventilator.[1][2][3][4][16]

Exovent[edit]

The exovent is a modern device similar to the cuirass ventilator, but developed in 2020, in response to the COVID-19 pandemic.[14][15]

Jacket ventilator[edit]

The jacket ventilator, also known as a poncho or raincoat ventilator, is a lighter version of the iron lung or the cuirass ventilator, constructed of an airtight material (such as plastic or rubber) arranged over a light metal or plastic frame, or screen, and depressurized and repressurized by a portable ventilator.[1][2][12][17]

Positive-and-negative pressure ventilator[edit]

Pulmotor[edit]

The Pulmotor is a device developed in the early 1900s which was the forerunner of modern mechanical ventilators. It used pressure from a tank of compressed oxygen to operate a valve system that alternately forced air into and out of a person's airway, using alternating positive and negative air pressure. Although portable, and able to be used by lay persons and non-medical emergency responders, some medical personnel criticized it as dangerous (in part due to the risks of barotrauma or vomiting) and inefficient.[7][8][9][10][16]

References[edit]

  1. ^ a b c d e f g h i j k l m Shneerson, Dr. John M., Newmarket General Hospital, (Newmarket, Suffolk, U.K.), "Non-invasive and domiciliary ventilation: negative pressure techniques," #5 of series "Assisted ventilation" in Thorax, 1991;46: pp.131-135, retrieved April 12, 2020
  • ^ a b c d e f g h i j k l m n Grum, Cyril M., MD, and Melvin L. Morganroth, MD, "Initiating Mechanical Ventilation,"inIntensive Care Medicine 1988;3:6-20, retrieved April 12, 2020
  • ^ a b c d e f g h Rockoff, Mark, M.D., "The Iron Lung and Polio,", video (8 minutes), January 11, 2016, OPENPediatrics and Boston Children's HospitalonYouTube, retrieved April 11, 2020 (historical background and images, explanatory diagrams, and live demonstrations)
  • ^ a b c d e f g h "The Iron Lung," Science Museum Group, Kensington, London, England, U.K., retrieved April 11, 2020
  • ^ a b c d "How Does Iron Lung Work?: Polio Survivor, 82, Among Last to Use Breathing Equipment," August 21, 2018, Newsweek retrieved April 11, 2020
  • ^ a b c d Jackson, Christopher D., MD, Dept. of Internal Medicine, and Muthiah P Muthiah, MD, FCCP, D-ABSM, Assoc. Prof. of Medicine, Div. of Pulmonary / Critical Care / Sleep Medicine, Univ. of Tennessee College of Medicine-Memphis, et.al., "What is the background of the iron lung form of mechanical ventilation?," April 11, 2019, Medscape, retrieved April 12, 2020 (short summary of iron history and technology, with photo)
  • ^ a b c Bottrell, John, "1907: The first mechanical ventilator: The Pulmotor," April 19, 2017, Asthma History blog, retrieved April 12, 2020
  • ^ a b c "Draeger Pulmotor", Wood Library-Museum of Anesthesiology
  • ^ a b c "The Return of the Pulmotor as a 'Resuscitator': A Back-Step toward the Death of Thousands," by Yandell Henderson, December 1943, Science.
  • ^ a b c Bahns, Ernst, It began with the Pulmotor: One Hundred Years of Artificial Ventilation, Dräger Medical AG & Co. KG, Lübeck, Germany (original manufacturers of the Pulmotor).
  • ^ Corrado, A.; Gorini, M.: "Negative-pressure ventilation: is there still a role?," European Respiratory Journal 2002, 20: pp.187-197;, also in PDF retrieved April 17, 2020
  • ^ a b c Raymondos, Konstantinos; Jörg Ahrens; Ulrich Molitoris: "Combined Negative- and Positive-Pressure Ventilation for the Treatment of ARDS", in Case Reports in Critical Care 2015; 2015: 714902. Published online July 28, 2015, from NCBI, National Institutes of Health, retrieved April 12, 2020.
  • ^ Walkey, Allan M.D. and Ross Summer M.D., "Negative pressure" in "E. Noninvasive Mechanical Ventilation," in Boston Medical Center ICU Manual, 2008, Boston University, p.17, retrieved April 12, 2020.
  • ^ a b "Modern iron lung designed to address ventilator shortage,", April 06, 2020, New Atlas, retrieved April 11, 2020 (note detailed reader comment, , April 7, 2020, by Christopher Smith, with clinical application details.)
  • ^ a b "The 'iron lung' and the modern 'ventilation'," Oxy.gen, retrieved April 11, 2020
  • ^ a b Matioc, Adrian A., M.D., University of Wisconsin School of Medicine & Public Health, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, "Early Positive and Alternate Pressure Machines" in『An Anesthesiologist’s Perspective on the History of Basic Airway Management: The 'Progressive' Era, 1904 to 1960,』submitted May 27, 2017, published February 2018, Anesthesiology, Vol. 128, No 2
  • ^ "Poncho,"[permanent dead link] by medical device manufacturer Dima Italia S.r.l.ofBologna, Italy (picture of jacket ventilator ("poncho"), and other information.), retrieved April 12, 2020
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Negative_pressure_ventilator&oldid=1192603064"

    Categories: 
    Respiratory therapy
    Mechanical ventilation
    Hidden categories: 
    All articles with dead external links
    Articles with dead external links from December 2023
    Articles with permanently dead external links
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 30 December 2023, at 08:12 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki