Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Overview  





2 US National Electrical Code use  





3 References  














NeherMcGrath method







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inelectrical engineering, Neher–McGrath is a method of estimating the steady-state temperature of electrical power cables for some commonly encountered configurations. By estimating the temperature of the cables, the safe long-term current-carrying capacity of the cables can be calculated.

J. H. Neher and M. H. McGrath were two electrical engineers who wrote a paper in 1957 about how to calculate the capacity of current (ampacity) of cables.[1] The paper described two-dimensional highly symmetric simplified calculations which have formed the basis for many cable application guidelines and regulations. Complex geometries, or configurations that require three-dimensional analysis of heat flow, require more complex tools such as finite element analysis. Their article became used as reference for the ampacity in most of the standard tables.

Overview[edit]

The Neher–McGrath paper summarized years of research into analytical treatment of the practical problem of heat transfer from power cables. The methods described included all the heat generation mechanisms from a power cable (conductor loss, dielectric loss and shield loss).[2]

From the basic principles that electric current leads to thermal heating and thermal power transfer to the ambient environment requires some temperature difference, it follows that the current leads to a temperature rise in the conductors. The ampacity, or maximum allowable current, of an electric power cable depends on the allowable temperatures of the cable and any adjacent materials such as insulationortermination equipment. For insulated cables, the insulation maximum temperature is normally the limiting material property that constrains ampacity. For uninsulated cables (typically used in outdoor overhead installations), the tensile strength of the cable (as affected by temperature) is normally the limiting material property. The Neher–McGrath method is the electrical industry standard for calculating cable ampacity, most often employed via lookup in tables of precomputed results for common configurations.

US National Electrical Code use[edit]

The equation in section 310-15(C) of the National Electrical Code, called the Neher–McGrath equation (NM), may be used to estimate the effective ampacity of a cable:[3]

In the equation, is normally the limiting conductor temperature derived from the insulation or tensile strength limitations. is a term added to the ambient temperature to compensate for heat generated in the jacket and insulation for higher voltages. is called the dielectric loss temperature rise and is generally regarded as insignificant for voltages below 2000 V. Term is a multiplier used to convert direct current resistance () to the effective alternating current resistance (which typically includes conductor skin effects and eddy current losses). For wire sizes smaller than AWG No. 2 (33.6 mm2, 0.0521 sq in), this term is also generally regarded as insignificant. is the effective thermal resistance between the conductor and the ambient conditions, which can require significant empirical or theoretical effort to estimate. With respect to the AC-sensitive terms, tabular presentation of the NM equation results in the National Electrical Code was developed assuming the standard North American power frequency of 60 hertz and sinusoidal wave forms for current and voltage.

The challenges posed by the complexity of estimating and of estimating the local increase in ambient temperature obtained by co-locating many cables (in a duct bank) create a market niche in the electric power industry for software dedicated to ampacity estimation.

References[edit]

  1. ^ Neher, J. H.; McGrath, M. H. (October 1957). "The Calculation of the Temperature Rise and Load Capability of Cable Systems". AIEE Transactions. 76 (III): 752–772.
  • ^ Anders, George J. (1997). Rating of Electric Power Cables: Ampacity Computations for Transmission, Distribution, and Industrial Applications. McGraw-Hill Professional. pp. 17–20. ISBN 0-07-001791-3.
  • ^ Lane, Keith. "Heating" (PDF). Pure Power (Spring 2008). Consulting-Specifying Engineer: 15–19.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Neher–McGrath_method&oldid=1227447178"

    Categories: 
    Power engineering
    Power cables
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 5 June 2024, at 19:38 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki