Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Nephelometer uses  



1.1  Sheath air  





1.2  Global radiation balance  





1.3  Visibility  





1.4  Medicine  





1.5  Fire detection  







2 Turbidity units  





3 See also  





4 References  














Nephelometer






Català
Deutsch
Español
Euskara
Hrvatski
עברית
Қазақша

Norsk nynorsk
Polski
Português
Русский
Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


A nephelometer at the Kosan, Cheju Island, South Korea NOAA facility

Anephelometer[1]oraerosol photometer[2] is an instrument for measuring the concentration of suspended particulates in a liquidorgas colloid. A nephelometer measures suspended particulates by employing a light beam (source beam) and a light detector set to one side (often 90°) of the source beam. Particle density is then a function of the light reflected into the detector from the particles. To some extent, how much light reflects for a given density of particles is dependent upon properties of the particles such as their shape, color, and reflectivity. Nephelometers are calibrated to a known particulate, then use environmental factors (k-factors) to compensate lighter or darker colored dusts accordingly. K-factor is determined by the user by running the nephelometer next to an air sampling pump and comparing results.[clarification needed] There are a wide variety of research-grade nephelometers on the market as well as open source varieties.[3]

Nephelometer uses[edit]

External videos
video icon Andrea Polli, Particle Falls, an art installation using a nephelometer to visualize particulate matter (2013).
Particulate contaminants (size in micrometers).

The main uses of nephelometers relate to air quality measurement for pollution monitoring, climate monitoring, and visibility. Airborne particles are commonly either biological contaminants, particulate contaminants, gaseous contaminants, or dust.[citation needed]

The accompanying chart shows the types and sizes of various particulate contaminants. This information helps understand the character of particulate pollution inside a building or in the ambient air, as well as the cleanliness level in a controlled environment.[citation needed]

Biological contaminants include mold, fungus, bacteria, viruses, animal dander, dust mites, pollen, human skin cells, cockroach parts, or anything alive or living at one time. They are the biggest enemy of indoor air quality specialists because they are contaminants that cause health problems. Levels of biological contamination depend on humidity and temperature that supports the livelihood of micro-organisms. The presence of pets, plants, rodents, and insects will raise the level of biological contamination.[citation needed]

Sheath air[edit]

Sheath air is clean filtered air that surrounds the aerosol stream to prevent particulates from circulating or depositing within the optic chamber. Sheath air prevents contamination caused by build-up and deposits, improves response time by containing the sample, and improves maintenance by keeping the optic chamber clean. The nephelometer creates the sheath air by passing air through a zero filter before beginning the sample.[citation needed]

Global radiation balance[edit]

Radiation balance (thickness of Earth's atmosphere is greatly exaggerated).

Nephelometers are also used in global warming studies, specifically measuring the global radiation balance. Three wavelength nephelometers fitted with a backscatter shutter can determine the amount of solar radiation that is reflected back into space by dust and particulate matter. This reflected light influences the amount of radiation reaching the earth's lower atmosphere and warming the planet.[citation needed]

Visibility[edit]

Nephelometers are also used for measurement of visibility with simple one-wavelength nephelometers used throughout the world by many EPAs. Nephelometers, through the measurement of light scattering, can determine visibility in distance through the application of a conversion factor called Koschmieder's formula.[citation needed]

Medicine[edit]

In medicine, nephelometry is used to measure immune function. It is also used in clinical microbiology, for preparation of a standardized inoculum (McFarland suspension) for antimicrobial susceptibility testing.[4][5]

Fire detection[edit]

Gas-phase nephelometers are also used in the detection of smoke and other particles of combustion. In such use, the apparatus is referred to as an aspirated smoke detector. These have the capability to detect extremely low particle concentrations (to 0.005%) and are therefore highly suitable to protecting sensitive or valuable electronic equipment, such as mainframe computers and telephone switches.[citation needed]

Turbidity units[edit]

A nephelometer installation at Acadia National Park
Turbidimeters used at a water purification plant to measure turbidity (in NTU) of raw water and clear water after filtration

A more popular term for this instrument in water quality testing is a turbidimeter. However, there can be differences between models of turbidimeters, depending upon the arrangement (geometry) of the source beam and the detector. A nephelometric turbidimeter always monitors light reflected off the particles and not attenuation due to cloudiness. In the United States environmental monitoring the turbidity standard unit is called Nephelometric Turbidity Units (NTU), while the international standard unit is called Formazin Nephelometric Unit (FNU). The most generally applicable unit is Formazin Turbidity Unit (FTU), although different measurement methods can give quite different values as reported in FTU (see below).

Gas-phase nephelometers are also used to study the atmosphere. These can provide information on visibility and atmospheric albedo.

See also[edit]

References[edit]

  1. ^ "Nephelometer" comes from the Greek word for "cloud", nephos, cf. "nepheloid layer".
  • ^ Baron, Paul A. (1998-01-15). "Aerosol photometers for respirable dust measurements" (PDF). NIOSH Manual of Analytical Methods. Retrieved 2021-04-06.
  • ^ Bas Wijnen, G. C. Anzalone and Joshua M. Pearce, Open-source mobile water quality testing platform. Journal of Water, Sanitation and Hygiene for Development, 4(3) pp. 532–537 (2014). doi:10.2166/washdev.2014.137 open access
  • ^ "Sensititre™ Nephelometer".
  • ^ Guinet, Roland M. F.; Mazoyer, Marie-Andrée (1983). "Laser nephelometric semi-automated system for rapid bacterial susceptibility testing". Journal of Antimicrobial Chemotherapy. 12 (3): 257–263. doi:10.1093/jac/12.3.257. ISSN 0305-7453.
  • ^ Formazin was first used for standardizing turbidity measurements in 1926.
  • ^ Reducing turbidity in chromic acid solutions, Zeller, III, Robert L.; Morgan, Russell J.; Rabbe, Gilbert D.; Fiscus, Donna R.; Wilkes, Jr., Richard L.; United States Patent 5034211, Filing date 1990-10-29, Publication date 1991-07-23
  • ^ Florida Department of Agriculture and Consumer Services 2006 Codebook Chapter 5L-1: The Comprehensive Shellfish Control code

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Nephelometer&oldid=1188178342"

    Categories: 
    Measuring instruments
    Meteorological instrumentation and equipment
    Water
    Aerosol measurement
    Colloids
    Colloidal chemistry
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Wikipedia articles needing clarification from October 2021
    Articles needing additional references from January 2022
    All articles needing additional references
    All articles with unsourced statements
    Articles with unsourced statements from January 2022
     



    This page was last edited on 3 December 2023, at 20:30 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki