Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Concept  





2 Implementations  





3 See also  





4 References  





5 External links  














Network Protocol Virtualization







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Network Protocol VirtualizationorNetwork Protocol Stack Virtualization is a concept of providing network connections as a service, without concerning application developer to decide the exact communication stack composition.

Concept

[edit]
Dataflow for communication payload leveraging network protocol virtualization software.

Network Protocol Virtualization (NPV) was firstly proposed by Heuschkel et al. in 2015 as a rough sketch as part of a transition concept for network protocol stacks.[1] The concept evolved and was published in a deployable state in 2018.[2]

The key idea is to decouple applications from their communication stacks. Today the socket API requires application developer to compose the communication stack by hand by choosing between IPv4/IPv6 and UDP/TCP. NPV proposes the network protocol stack should be tailored to the observed network environment (e.g. link layer technology, or current network performance). Thus, the network stack should not be composed at development time, but at runtime and it needs the possibility to be adapted if needed.

Additionally, the decoupling relaxes the chains of the ISO OSI network layer model, and thus enables alternative concepts of communication stacks. Heuschkel et al. proposes the concept of Application layer middleboxes as an example to add additional layers to the communication stack to enrich the communication with useful services (e.g. HTTP optimizations[3])

The Figure illustrates the data flow. Applications interface to the NPV software through some kind of API. Heuschkel et al. proposed socket API equivalent replacements but envisioned more sophisticated interfaces for future applications. A scheduler assigns the application payload to one (of potentially many) communication stack to get processed to network packets, that get sent using networking hardware. A management component decides how communication stacks get composed and the scheduling scheme. To support decisions a management interface is provided to integrate the management system in software-defined networking contexts.

NPV has been further investigated as a central element of LPWAN Internet of Things (IoT) scenarios. Specifically, the deployment of applications that are agnostic to the underlying transport, network, link and physical layers was explored by Rolando Herrero in 2020.[4] In this context, NPV becomes a very successful and flexible tool to accomplish the deployment and management of constrained sensors, actuators and controllers in massive IoT access networks.[5]

Implementations

[edit]

Currently there is just one academic implementation available to demonstrate the concept. Heuschkel et al. published this implementation as demonstrator in 2016.[6] The last iteration of this code is available under AGPLv3 on Github.

See also

[edit]

References

[edit]
  1. ^ Heuschkel, Jens; Schweizer, Immanuel; Zimmermann, Thorsten; Wehrle, Klaus; Mühlhäuser, Max (2015). "Protocol Virtualization through Dynamic Network Stacks". Proceedings of 1st Workshop on Software-Defined Networking and Network Function Virtualization for Flexible Network Management (SDNFlex).
  • ^ Heuschkel, Jens; Wang, Lin; Fleckstein, Erik; Ofenloch, Michael; Blöcher, Marcel; Crowcroft, Jon; Mühlhäuser, Max (2015). "VirtualStack: Flexible Cross-layer Optimization via Network Protocol Virtualization". Proceedings of 43rd Local Computer Networks (LCN) IEEE.
  • ^ Heuschkel, Jens; Forstmann, Jens; Wang, Lin; Mühlhäuser, Max (2018). "Identifying the Performance Impairment of HTTP". Proceedings of 42rd Local Computer Networks (LCN) IEEE.
  • ^ Herrero, Rolando (2021). "Protocol stack virtualization support in IoT". Transactions on Emerging Telecommunications Technologies. 32 (11). doi:10.1002/ett.4340. S2CID 238717271.
  • ^ Herrero, Rolando (2021). "Towards protocol stack virtualization in massive IoT deployments". Internet of Things. 14: 100396. doi:10.1016/j.iot.2021.100396. S2CID 233522611.
  • ^ Heuschkel, Jens; Stein, Michael; Mühlhäuser, Max (2016). "VirtualStack: SDN-controlled Transparent Protocol Transitions At the Edge". Proceedings of 41rd Local Computer Networks (LCN) IEEE.
  • [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Network_Protocol_Virtualization&oldid=1222365328"

    Category: 
    Computer networking
     



    This page was last edited on 5 May 2024, at 16:23 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki