Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Components  





2 External virtualization  





3 Internal virtualization  



3.1  Examples  







4 Use in testing  





5 Wireless network virtualization  





6 Performance  





7 See also  





8 References  





9 Further reading  





10 External links  














Network virtualization






العربية
Català
Čeština
فارسی
Italiano

Русский
Suomi
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


In computing, network virtualization is the process of combining hardware and software network resources and network functionality into a single, software-based administrative entity, a virtual network. Network virtualization involves platform virtualization, often combined with resource virtualization.

Network virtualization is categorized as either external virtualization, combining many networks or parts of networks into a virtual unit, or internal virtualization, providing network-like functionality to software containers on a single network server.

Insoftware testing, software developers use network virtualization to test software which are under development in a simulation of the network environments in which the software is intended to operate. As a component of application performance engineering, network virtualization enables developers to emulate connections between applications, services, dependencies, and end users in a test environment without having to physically test the software on all possible hardware or system software. The validity of the test depends on the accuracy of the network virtualization in emulating real hardware and operating systems.

Components[edit]

Various equipment and software vendors offer network virtualization by combining any of the following:

External virtualization[edit]

External network virtualization combines or subdivides one or more local area networks (LANs) into virtual networks to improve a large network's or data center's efficiency. A virtual local area network (VLAN) and network switch comprise the key components. Using this technology, a system administrator can configure systems physically attached to the same local network into separate virtual networks. Conversely, an administrator can combine systems on separate local area networks (LANs) into a single VLAN spanning segments of a large network.

External network virtualization is envisioned to be placed in the middle of the network stack and help integrating different architectures proposed for next generation networks.[1]

Internal virtualization[edit]

Internal network virtualization configures a single system with software containers, such as Xen hypervisor control programs, or pseudo-interfaces, such as a VNIC, to emulate a physical network with software. This can improve a single system's efficiency by isolating applications to separate containers or pseudo-interfaces.[2]

Examples[edit]

Citrix and Vyatta have built a virtual network protocol stack combining Vyatta's routing, firewall, and VPN functions with Citrix's Netscaler load balancer, branch repeater wide area network (WAN) optimization, and secure sockets layer VPN.

OpenSolaris network virtualization provides a so-called "network in a box" (see OpenSolaris Network Virtualization and Resource Control).

Microsoft Virtual Server uses virtual machines to make a "network in a box" for x86 systems. These containers can run different operating systems, such as Microsoft WindowsorLinux, either associated with or independent of a specific network interface controller (NIC).

Use in testing[edit]

Network virtualization may be used in application development and testing to mimic real-world hardware and system software. In application performance engineering, network virtualization enables emulation of connections between applications, services, dependencies, and end users for software testing.

Wireless network virtualization[edit]

Wireless network virtualization can have a very broad scope ranging from spectrum sharing, infrastructure virtualization, to air interface virtualization. Similar to wired network virtualization, in which physical infrastructure owned by one or more providers can be shared among multiple service providers, wireless network virtualization needs the physical wireless infrastructure and radio resources to be abstracted and isolated to a number of virtual resources, which then can be offered to different service providers. In other words, virtualization, regardless of wired or wireless networks, can be considered as a process splitting the entire network system. However, the distinctive properties of the wireless environment, in terms of time-various channels, attenuation, mobility, broadcast, etc., make the problem more complicated. Furthermore, wireless network virtualization depends on specific access technologies, and wireless network contains much more access technologies compared to wired network virtualization and each access technology has its particular characteristics, which makes convergence, sharing and abstraction difficult to achieve. Therefore, it may be inaccurate to consider wireless network virtualization as a subset of network virtualization.[3]

Performance[edit]

Until 1 Gbit/s networks, network virtualization was not suffering from the overhead of the software layers or hypervisor layers providing the interconnects. With the rise of high bandwidth, 10 Gbit/s and beyond, the rates of packets exceed the capabilities of processing of the networking stacks.[citation needed] In order to keep offering high throughput processing, some combinations of software and hardware helpers are deployed in the so-called "network in a box" associated with either a hardware-dependent network interface controller (NIC) using SRIOV extensions of the hypervisor or either using a fast path technology between the NIC and the payloads (virtual machines or containers).

For example, in case of Openstack, network is provided by Neutron which leverages many features from the Linux kernel for networking: iptables, iproute2, L2 bridge, L3 routing or OVS. Since the Linux kernel cannot sustain the 10G packet rate[citation needed], then some bypass technologies for a fast path are used. The main bypass technologies are either based on a limited set of features such as Open vSwitch (OVS) with its DPDK user space implementation or based on a full feature and offload of Linux processing such as 6WIND virtual accelerator.

See also[edit]

References[edit]

  1. ^ P. Martinez-Julia, A. F. Skarmeta, A. Galis. "Towards a Secure Network Virtualization Architecture for the Future Internet" Future Internet Assembly, 2013, doi:10.1007/978-3-642-38082-2_12.
  • ^ A. Galis, S. Clayman, A. Fischer, A. Paler, Y. Al-Hazmi, H. De Meer, A. Cheniour, O. Mornard, J. Patrick Gelas and L. Lefevre, et al. "Future Internet Management Platforms for Network Virtualisation and Service Clouds"- ServiceWave 2010, December 2010, http://servicewave.eu/2010/joint-demonstration-evening/ Archived 2014-07-31 at the Wayback Machine and in "Towards A Service-Based Internet" Lecture Notes in Computer Science, 2010, Volume 6481/2010, 235-237, doi:10.1007/978-3-642-17694-4_39
  • ^ Liang, C.; Yu, F. R. (2015). "Wireless Network Virtualization: A Survey, Some Research Issues and Challenges". IEEE Communications Surveys and Tutorials. 17 (1): 358–380. doi:10.1109/COMST.2014.2352118. S2CID 14838118.
    • Victor Moreno and Kumar Reddy (2006). Network Virtualization. Indianapolis: Cisco Press.

    Further reading[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Network_virtualization&oldid=1223813815"

    Categories: 
    Virtualization
    Internet Protocol based network software
    Hidden categories: 
    Webarchive template wayback links
    Articles with short description
    Short description is different from Wikidata
    Use American English from March 2021
    All Wikipedia articles written in American English
    All articles with unsourced statements
    Articles with unsourced statements from June 2016
    Articles with unsourced statements from March 2020
     



    This page was last edited on 14 May 2024, at 14:44 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki