Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Theory  





2 Arches  





3 Practical applications  





4 See also  





5 References  














Neutral axis






Català
Čeština
Deutsch
Español
Français
Italiano
Nederlands
Norsk bokmål
Polski
Português
Русский
Svenska
Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


This article needs additional citations for verification. Please help improve this articlebyadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Neutral axis" – news · newspapers · books · scholar · JSTOR
(February 2023) (Learn how and when to remove this message)
Beam with neutral axis (x).

The neutral axis is an axis in the cross section of a beam (a member resisting bending) or shaft along which there are no longitudinal stresses or strains.

Theory[edit]

If the section is symmetric, isotropic and is not curved before a bend occurs, then the neutral axis is at the geometric centroid of a beam or shaft. All fibers on one side of the neutral axis are in a state of tension, while those on the opposite side are in compression.

Since the beam is undergoing uniform bending, a plane on the beam remains plane. That is:

Where is the shear strain and is the shear stress

There is a compressive (negative) strain at the top of the beam, and a tensile (positive) strain at the bottom of the beam. Therefore by the Intermediate Value Theorem, there must be some point in between the top and the bottom that has no strain, since the strain in a beam is a continuous function.

Let L be the original length of the beam (span)
ε(y) is the strain as a function of coordinate on the face of the beam.
σ(y) is the stress as a function of coordinate on the face of the beam.
ρ is the radius of curvature of the beam at its neutral axis.
θ is the bend angle

Since the bending is uniform and pure, there is therefore at a distance y from the neutral axis with the inherent property of having no strain:

Therefore the longitudinal normal strain varies linearly with the distance y from the neutral surface. Denoting as the maximum strain in the beam (at a distance c from the neutral axis), it becomes clear that:

Therefore, we can solve for ρ, and find that:

Substituting this back into the original expression, we find that:

Due to Hooke's Law, the stress in the beam is proportional to the strain by E, the modulus of elasticity:

Therefore:

From statics, a moment (i.e. pure bending) consists of equal and opposite forces. Therefore, the total amount of force across the cross section must be 0.

Therefore:

Since y denotes the distance from the neutral axis to any point on the face, it is the only variable that changes with respect to dA. Therefore:

Therefore the first moment of the cross section about its neutral axis must be zero. Therefore the neutral axis lies on the centroid of the cross section.

Note that the neutral axis does not change in length when under bending. It may seem counterintuitive at first, but this is because there are no bending stresses in the neutral axis. However, there are shear stresses (τ) in the neutral axis, zero in the middle of the span but increasing towards the supports, as can be seen in this function (Jourawski's formula);

where
T = shear force
Q = first moment of area of the section above/below the neutral axis
w = width of the beam
I = second moment of area of the beam

This definition is suitable for the so-called long beams, i.e. its length is much larger than the other two dimensions.

Arches[edit]

Arches also have a neutral axis if they are made of stone; stone is an inelastic medium, and has little strength in tension. Therefore as the loading on the arch changes the neutral axis moves- if the neutral axis leaves the stonework, then the arch will fail.

This theory (also known as the thrust line method) was proposed by Thomas Young and developed by Isambard Kingdom Brunel.

Practical applications[edit]

Building trades workers should have at least a basic understanding of the concept of neutral axis, to avoid cutting openings to route wires, pipes, or ducts in locations which may dangerously compromise the strength of structural elements of a building. Building codes usually specify rules and guidelines which may be followed for routine work, but special situations and designs may need the services of a structural engineer to assure safety.[1][2]

See also[edit]

References[edit]

  1. ^ "Digital Codes". ICC Codes. International Code Council, Inc. Retrieved 2023-02-10.
  • ^ Yeh, Borjen; Herzog, Benjamin. "Effect of holes on the structural capacities of laminated veneer lumber" (PDF). APA Wood. APA – The Engineered Wood Association. Retrieved 2023-02-10.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Neutral_axis&oldid=1169723865"

    Categories: 
    Boilermaking
    Solid mechanics
    Hidden categories: 
    Articles needing additional references from February 2023
    All articles needing additional references
     



    This page was last edited on 10 August 2023, at 21:52 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki