Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 References  














Neutron supermirror






العربية
Deutsch
Español
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Aneutron supermirror is a highly polished, layered material used to reflect neutron beams. Supermirrors are a special case of multi-layer neutron reflectors with varying layer thicknesses.[1]

The first neutron supermirror concept was proposed by Ferenc Mezei [hu],[2] inspired by earlier work with X-rays.

Supermirrors are produced by depositing alternating layers of strongly contrasting substances, such as nickel and titanium, on a smooth substrate. A single layer of high refractive index material (e.g. nickel) exhibits total external reflection at small grazing angles up to a critical angle . For nickel with natural isotopic abundances, in degrees is approximately where is the neutron wavelength in Angstrom units.

A mirror with a larger effective critical angle can be made by exploiting diffraction (with non-zero losses) that occurs from stacked multilayers.[3] The critical angle of total reflection, in degrees, becomes approximately , where is the "m-value" relative to natural nickel. values in the range of 1–3 are common, in specific areas for high-divergence (e.g. using focussing optics near the source, choppers, or experimental areas) m=6 is readily available.

Nickel has a positive scattering cross section, and titanium has a negative scattering cross section, and in both elements the absorption cross section is small, which makes Ni-Ti the most efficient technology with neutrons. The number of Ni-Ti layers needed increases rapidly as , with in the range 2–4, which affects the cost. This has a strong bearing on the economic strategy of neutron instrument design.[4]

References[edit]

  1. ^ Chupp, T. "Neutron Optics and Polarization" (PDF). Retrieved 16 April 2019.
  • ^ Mezei, F. (1976). "Novel polarized neutron devices: supermirror and spin component amplifier" (PDF). Communications on Physics (London). 1 (3): 81–85.
  • ^ Hayter, J. B.; Mook, H. A. (1989). "Discrete Thin-Film Multilayer Design for X-ray and Neutron Supermirrors". Journal of Applied Crystallography. 22 (1): 35–41. Bibcode:1989JApCr..22...35H. doi:10.1107/S0021889888010003. S2CID 94163755.
  • ^ Bentley, P. M. (2020). "Instrument suite cost optimisation in a science megaproject". Journal of Physics Communications. 4 (4): 045014. Bibcode:2020JPhCo...4d5014B. doi:10.1088/2399-6528/ab8a06.

  • t
  • e
  • t
  • e

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Neutron_supermirror&oldid=1205495451"

    Categories: 
    Optical materials
    Particle physics stubs
    Technology stubs
    Hidden category: 
    All stub articles
     



    This page was last edited on 9 February 2024, at 20:04 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki