Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Applications  





2 History  





3 See also  





4 References  














Neyer d-optimal test






Српски / srpski
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The Neyer d-optimal test is a sensitivity test. It can be used to answer questions such as "How far can a carton of eggs fall, on average, before one breaks?" If these egg cartons are very expensive, the person running the test would like to minimize the number of cartons dropped, to keep the experiment cheaper and to perform it faster. The Neyer test allows the experimenter to choose the experiment that gives the most information. In this case, given the history of egg cartons which have already been dropped, and whether those cartons broke or not, the Neyer test says "you will learn the most if you drop the next egg carton from a height of 32.123 meters."

Applications[edit]

The Neyer test is useful in any situation when you wish to determine the average amount of a given stimulus needed in order to trigger a response. Examples:

History[edit]

The Neyer-d optimal test was described by Barry T. Neyer in 1994. This method has replaced the earlier Bruceton analysis or "Up and Down Test" that was devised by Dixon and Mood in 1948 to allow computation with pencil and paper. Samples are tested at various stimulus levels, and the results (response or no response) noted. The Neyer Test guides the experimenter to pick test levels that provide the maximum amount of information. Unlike previous methods that have been developed, this method requires the use of a computer program to calculate the test levels.

Although not directly related to the test method, the likelihood ratio analysis method is often used to analyze the results of tests conducted with the Neyer D-Optimal test. The combined test and analysis methods are commonly known as the Neyer Test.

Dror and Steinberg (2008) suggest another experimental design method which is more efficient than Neyer's, by enabling the usage of a D-optimal design criterion from the outset of the experiment. Furthermore, their method is extended to deal with situations which are not handled by previous algorithms, including extension from fully sequential designs (updating the plan after each observation) to group-sequential designs (any partition of the experiment to blocks of numerous observations), from a binary response ("success" or "failure") to any generalized linear model, and from the univariate case to the treatment of multiple predictors (such as designing an experiment to test a response in a medical treatment where the experimenters changes doses of two different drugs).

See also[edit]

References[edit]


Retrieved from "https://en.wikipedia.org/w/index.php?title=Neyer_d-optimal_test&oldid=1155089689"

Categories: 
Explosives engineering
Sequential experiments
 



This page was last edited on 16 May 2023, at 15:38 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki