Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Description  



1.1  "Air-to-vacuum" engines  





1.2  "Vacuum" engines  







2 See also  





3 References  





4 External links  














Nozzle extension






Русский
Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Artist rendition of liquid rocket engine J-2X with expanded nozzle extension.
The mockup of NK-33-1 with a nozzle extension.

Anozzle extension is an extension of the nozzle of a reaction/rocket engine. The application of nozzle extensions improves the efficiency of rocket engines in vacuum by increasing the nozzle expansion ratio. As a rule, their modern design assumes use of carbon-carbon materials without regenerative cooling. Nozzle extensions can be both stationary, for high-altitude engines, or sliding, for engines designed to operate at a range of altitudes.

Description[edit]

As of 2009, the search for various schemes to achieve higher area ratios for rocket nozzles remains an active field of research and patenting.[1][2] Generally, modern application of these designs can be divided into "air-to-vacuum" engines, which start their work at sea level and finish it at vacuum conditions, and "vacuum" engines, which perform all their operations in a vacuum.

"Air-to-vacuum" engines[edit]

For first stage rocket engines, the engine works with nozzle extension in disposed position during the first minutes of flight and expands it at some predefined level of air pressure. This scheme assumes the outer skirt of the bell is extended while the engine is functioning and its installation to working position happens in the upper layers of the atmosphere. It excludes problems with flow separation at sea level and increases efficiency of the engine in vacuum.[3] For example, application of nozzle extension for liquid rocket engine NK-33 improves the value of specific impulse up to 15-20 sec for near-space conditions. Therefore, this scheme adjusts the system to ambient conditions along the trajectory or, in other words, allows altitude compensation.

"Vacuum" engines[edit]

Rocket engines of upper stages perform all their operations in space and therefore in a vacuum. In order to achieve maximum efficiency for this class of engines they need high area ratios. This makes the nozzles a very sizable part of the engine, which must be completely enclosed below the nose cone of a rocket. The payload fairing and supporting constructions[4] must endure all stresses and loads during launch and flight. Consequently, the use of an outer expandable skirt in this case allows the size of the upper stage and payload fairing to be minimized, which in turn decreases the total mass of the nose cone.[5] For these reasons, nozzle extensions are used for rocket engines RL-10 and RD-58.[5][6]

See also[edit]

References[edit]

  • ^ (in Russian) Work on modifying NK-33, News of cosmonautics, November 2002
  • ^ "UAC Construction & Contractors Division". UAC Construction Media. 2008-03-18.
  • ^ a b RL10B-2 - NOZZLE EXTENSION ASSEMBLY IMPROVEMENTS FOR DELTA IV[permanent dead link]
  • ^ (in Russian) Expandable and fixed nozzle extensions without regenerative cooling, Discussion thread at "News of cosmonautics" forum
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Nozzle_extension&oldid=1086598618"

    Categories: 
    Nozzles
    Rocket propulsion
    Spacecraft propulsion
    Hidden categories: 
    Articles with Russian-language sources (ru)
    All articles with dead external links
    Articles with dead external links from April 2020
    Articles with permanently dead external links
     



    This page was last edited on 7 May 2022, at 04:34 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki