Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 References  





2 External links  














Oasification






Español
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Greening the Desert II site, Dead Sea Valley Jordan (photographed 2018) is an oasification project

Inhydrology, oasification is the antonymtodesertificationbysoil erosion. This technique has limited application and is normally considered for much smaller areas than those threatened by desertification.[citation needed]

Oasification is also a developing direction of environmental engineering.

To help the oasification process, engineers aim to develop a thriving dense woody plant cover to redress the hydrological, edaphic and botanical degradation affecting a slope. This is done through appropriate soil preparation and the introduction of suitable plant species. It is also necessary to make adequate water harvesting systems—ideally taking advantage of the degradation process of the slope, collecting runoff water in ponds around the sites to be forested.

The term "oasification" was coined in 1999 by Andrés Martínez de Azagra Paredes, PhD Forest Engineer and professor on Hydraulics and Forest Hydrology at E.T.S. of Agroforestry Engineering in Palencia, University of Valladolid, Spain.

In oasification, soil and nutrient harvesting are regarded as fundamental component parts in the reclamation process of a degraded slope. Besides harvesting water, oasification preserves and accumulates soil and nutrients, helping to control water erosion—a common problem in dry climates. Ludwig et al. (1997) reported about sloping areas under semiarid conditions in Australia where the landscape is naturally divided into source and sink zones (surface runoff and run-on areas), which are sometimes reclaimed by plant species through retention of water soil and litter.

A common approach is the planting of various common horticulturally significant trees, which "are adapted to dry environments...these plants act as windbreaks and the extensive root network binds the soil thus reducing water erosion especially at the beginning of the rainy season when soil cover is at its lowest. Deciduous activity returns large amounts of organic matter to the soil in the form of leaf material which in tum support more vegetation biomass, and hence more soil cover and consequently erosion control. Eventually, ecosystems are reclaimed and desertification controlled."[1] Some of the trees deployed in this way include olive, cashew, date palm, fig, guava, mango, tamarind, pomegranate, papaya, lasoda, and jojoba.[1] Drought-tolerant legumes that provide additional biomass and fix nitrogen include green gram (Phaseolus aureus), black gram (Vigna mungo), chickpea (Cicer arictinum), cowpea (Vigna unguiculata), and lentil (Lens esculenta).[1]

Not only plants can effectively prevent land degradation, but microorganisms are also an effective biological measure to prevent land desertification. Microorganisms can greatly help the artificially cultivated sand control plants to survive in the oasis, thus reducing the waste of resources during recultivation. “Microbial control of land desertification includes organisms such as mosses, lichens,  cyanobacteria and slime molds to restore soil nutrients,  The use of engineered biocrust‐forming cyanobacteria with these traits (vs. non‐engineered) has the effect of restoring  soil fertility. potential to further increase soil fertility and to reduce soil erosion,  thus accelerating the recovery of degraded drylands. (Maestre et al., 2017).”

There are drawbacks to overbuilding oases. Water use in oases is often influenced by plants,  climate and human activities. This means that managers not only need to maintain a balance between direct human and  natural water use, but also find ways to preserve water near oases. If there is no way to distribute it properly,  it will cause serious consequences.

References[edit]

  1. ^ a b c Pasternak, Dov; Schlissel, Arnold, eds. (2001). Combating Desertification with Plants. Boston, MA: Springer US. pp. 35–39. doi:10.1007/978-1-4615-1327-8. ISBN 978-1-4613-5499-4.

External links[edit]


Retrieved from "https://en.wikipedia.org/w/index.php?title=Oasification&oldid=1213429407"

Categories: 
Aquatic ecology
Desert greening
Hydrology
Permaculture
Hidden categories: 
Articles with short description
Short description matches Wikidata
All articles with unsourced statements
Articles with unsourced statements from September 2022
 



This page was last edited on 13 March 2024, at 00:35 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki