Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Telecommand reception  





2 Telecommand execution  





3 Time-tagged telecommands  





4 Position-tagged telecommands  





5 Processing function  





6 See also  





7 References  





8 External links  














On-board data handling






Español
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The on-board data handling (OBDH) subsystem of a spacecraft is the subsystem which carries and stores data between the various electronics units and the ground segment, via the telemetry, tracking and command (TT&C) subsystem.[1]

In the earlier decades of the space industry, the OBDH function was usually considered a part of the TT&C, particularly before computers became common on board. In recent years, the OBDH function has expanded, so much that it is generally considered a separate subsystem to the TT&C, which is these days concerned solely with the RF link between the ground and the spacecraft.[2]

Functions commonly performed by the OBDH are:

Telecommand reception[edit]

The OBDH receives the TCs as a synchronous PCM data stream from the TT&C

Telecommand execution[edit]

The desired effect of the telecommand may be just to change a value in the on-board software, or to open/close a latching relay to reconfigure or power a unit, or maybe to fire a thruster or main engine. Whichever effect is desired, the OBDH subsystem will facilitate this either by sending an electric pulse from the OBC, or by passing the command through a data bus to the unit which will eventually execute the TC. Some TCs are part of a large block of commands, used to upload updated software or data tables to fine tune the operation of the spacecraft, or to deal with anomalies.

Time-tagged telecommands[edit]

It is often required to delay a command's execution until a certain time. This is often because the spacecraft is not in view of the ground station, but may also be for reasons of precision. The OBC will store the TC until the required time in a queue, and then execute it.

Position-tagged telecommands[edit]

Similar to time-tagged commands are commands that are stored for execution until the spacecraft is at a specified position. These are most useful for Earth observation satellites, which need to start an observation over a specified point of the Earth's surface. The spacecraft, often in Sun-synchronous orbits, take a precisely repeating track over the Earth. Observations which are taken from the same position may be compared using interferometry, if they are in close enough register.

The precise position required is sensed using GPS.

Once a position tagged command has been executed, it may be flagged for deletion or left to execute again when the spacecraft is once again over the same point.

Processing function[edit]

The modern OBDH always uses an on-board computer (OBC) that is reliable, usually with redundant processors. The processing power is made available to other applications which support the spacecraft bus, such as attitude control algorithms, thermal control, failure detection isolation and recovery. If the mission itself requires only a small amount of computing power (such as a small scientific satellite) then the payload may also be controlled by the software running on the OBC, to save launch mass and the considerable expense of a dedicated payload computer.

See also[edit]

References[edit]

  1. ^ Cutler, James W.; Beningo, Jacob (2021-01-01), Cappelletti, Chantal; Battistini, Simone; Malphrus, Benjamin K. (eds.), "10 - On-board data handling systems", Cubesat Handbook, Academic Press, pp. 199–219, ISBN 978-0-12-817884-3, retrieved 2022-02-09
  • ^ "Onboard Computers and Data Handling". www.esa.int. Retrieved 2022-02-09.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=On-board_data_handling&oldid=1185401827"

    Category: 
    Avionics
    Hidden categories: 
    Articles needing additional references from February 2022
    All articles needing additional references
     



    This page was last edited on 16 November 2023, at 14:16 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki