Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Optical applications  





2 Audio applications  



2.1  Oversampling  





2.2  Bandpass signals  





2.3  Signal overload  







3 Notes  





4 References  














Anti-aliasing filter






العربية
Català
Español
فارسی
Français
ि
Italiano
Latviešu
Bahasa Melayu
Română
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Optical low-pass filter)

Ananti-aliasing filter (AAF) is a filter used before a signal sampler to restrict the bandwidth of a signal to satisfy the Nyquist–Shannon sampling theorem over the band of interest. Since the theorem states that unambiguous reconstruction of the signal from its samples is possible when the power of frequencies above the Nyquist frequency is zero, a brick wall filter is an idealized but impractical AAF.[a] A practical AAF makes a trade off between reduced bandwidth and increased aliasing. A practical anti-aliasing filter will typically permit some aliasing to occur or attenuate or otherwise distort some in-band frequencies close to the Nyquist limit. For this reason, many practical systems sample higher than would be theoretically required by a perfect AAF in order to ensure that all frequencies of interest can be reconstructed, a practice called oversampling.

Optical applications[edit]

Simulated photographs of a brick wall without (left) and with (right) an optical low-pass filter
Lowpassfilter
Optical low-pass filter (OLPF)

In the case of optical image sampling, as by image sensorsindigital cameras, the anti-aliasing filter is also known as an optical low-pass filter (OLPF), blur filter, or AA filter. The mathematics of sampling in two spatial dimensions is similar to the mathematics of time-domain sampling, but the filter implementation technologies are different.

The typical implementation in digital cameras is two layers of birefringent material such as lithium niobate, which spreads each optical point into a cluster of four points.[1] The choice of spot separation for such a filter involves a tradeoff among sharpness, aliasing, and fill factor (the ratio of the active refracting area of a microlens array to the total contiguous area occupied by the array). In a monochromeorthree-CCDorFoveon X3 camera, the microlens array alone, if near 100% effective, can provide a significant anti-aliasing function,[2] while in color filter array (e.g. Bayer filter) cameras, an additional filter is generally needed to reduce aliasing to an acceptable level.[3][4][5]

Alternative implementations include the Pentax K-3's anti-aliasing filter, which applies small vibrations to the sensor element.[6][promotion?]

Audio applications[edit]

Anti-aliasing filters are used at the input of an analog-to-digital converter. Similar filters are used as reconstruction filters at the output of a digital-to-analog converter. In the latter case, the filter prevents imaging, the reverse process of aliasing where in-band frequencies are mirrored out of band.

Oversampling[edit]

With oversampling, a higher intermediate digital sample rate is used, so that a nearly ideal digital filter can sharply cut off aliasing near the original low Nyquist frequency and give better phase response, while a much simpler analog filter can stop frequencies above the new higher Nyquist frequency. Because analog filters have relatively high cost and limited performance, relaxing the demands on the analog filter can greatly reduce both aliasing and cost. Furthermore, because some noise is averaged out, the higher sampling rate can moderately improve signal-to-noise ratio.

A signal may be intentionally sampled at a higher rate to reduce the requirements and distortion of the anti-alias filter. For example, compare CD audio with high-resolution audio. CD audio filters the signal to a passband edge of 20 kHz, with a stopband Nyquist frequency of 22.05 kHz and sample rate of 44.1 kHz. The narrow 2.05 kHz transition band requires a compromise between filter complexity and performance. High-resolution audio uses a higher sample rate, providing both a higher passband edge and larger transition band, which allows better filter performance with reduced aliasing, reduced attenuation of higher audio frequencies and reduced time and phase domain signal distortion.[7][8][failed verification] [9] [10]

Bandpass signals[edit]

Often, an anti-aliasing filter is a low-pass filter; this is not a requirement, however. Generalizations of the Nyquist–Shannon sampling theorem allow sampling of other band-limited passband signals instead of baseband signals.

For signals that are bandwidth limited, but not centered at zero, a band-pass filter can be used as an anti-aliasing filter. For example, this could be done with a single-sideband modulatedorfrequency modulated signal. If one desired to sample an FM radio broadcast centered at 87.9 MHz and bandlimited to a 200 kHz band, then an appropriate anti-alias filter would be centered on 87.9 MHz with 200 kHz bandwidth (orpassband of 87.8 MHz to 88.0 MHz), and the sampling rate would be no less than 400 kHz, but should also satisfy other constraints to prevent aliasing.[specify]

Signal overload[edit]

It is very important to avoid input signal overload when using an anti-aliasing filter. If the signal is strong enough, it can cause clipping at the analog-to-digital converter, even after filtering. When distortion due to clipping occurs after the anti-aliasing filter, it can create components outside the passband of the anti-aliasing filter; these components can then alias, causing the reproduction of other non-harmonically related frequencies.[11]

Notes[edit]

  1. ^ Brick-wall filters that run in realtime are not physically realizable as they have infinite latency and infinite order.

References[edit]

  1. ^ Adrian Davies and Phil Fennessy (2001). Digital imaging for photographers (Fourth ed.). Focal Press. ISBN 0-240-51590-0.
  • ^ S. B. Campana and D. F. Barbe (1974). "Tradeoffs between aliasing and MTF". Proceedings of the Electro-Optical Systems Design Conference – 1974 West International Laser Exposition – San Francisco, Calif., November 5-7, 1974. Chicago: Industrial and Scientific Conference Management, Inc. pp. 1–9. Bibcode:1974eosd.conf....1C. {{cite book}}: |journal= ignored (help)
  • ^ Brian W. Keelan (2004). Handbook of Image Quality: Characterization and Prediction. Marcel–Dekker. ISBN 0-8247-0770-2.
  • ^ Sidney F. Ray (1999). Scientific photography and applied imaging. Focal Press. p. 61. ISBN 978-0-240-51323-2.
  • ^ Michael Goesele (2004). New Acquisition Techniques for Real Objects and Light Sources in Computer Graphics. Books on Demand. p. 34. ISBN 978-3-8334-1489-3.
  • ^ "Pentax K-3". Retrieved November 29, 2013.
  • ^ Kester, Walt. "Oversampling Interpolating DACs" (PDF). Analog Devices. Retrieved January 17, 2015.
  • ^ Nauman Uppal (August 30, 2004). "Upsampling vs. Oversampling for Digital Audio". Audioholics. Retrieved October 6, 2012.
  • ^ Story, Mike (September 1997). "A Suggested Explanation For (Some Of) The Audible Differences Between High Sample Rate And Conventional Sample Rate Audio Material" (PDF). dCS Ltd. Archived (PDF) from the original on November 28, 2009.
  • ^ Lavry, Dan (1997). "Sampling, Oversampling, Imaging and Aliasing - a basic tutorial" (PDF). Lavry Engineering. Archived (PDF) from the original on June 21, 2015.
  • ^ Level and distortion in digital broadcasting (PDF), retrieved May 11, 2021

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Anti-aliasing_filter&oldid=1183765215#Optical_applications"

    Categories: 
    Digital signal processing
    Linear filters
    Electronic filter applications
    Anti-aliasing
    Hidden categories: 
    CS1 errors: periodical ignored
    Articles with short description
    Short description matches Wikidata
    Use mdy dates from September 2021
    Wikipedia introduction cleanup from November 2020
    All pages needing cleanup
    Articles covered by WikiProject Wikify from November 2020
    All articles covered by WikiProject Wikify
    Use American English from March 2019
    All Wikipedia articles written in American English
    Articles needing additional references from June 2023
    All articles needing additional references
    Pages using multiple image with auto scaled images
    All articles with a promotional tone
    Articles with a promotional tone from June 2023
    All articles with failed verification
    Articles with failed verification from April 2023
    Articles needing more detailed references
     



    This page was last edited on 6 November 2023, at 10:33 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki