Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Overlap matrix  





2 See also  





3 References  














Orbital overlap






العربية
Deutsch
Français

Italiano
Nederlands

Svenska
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inchemical bonds, an orbital overlap is the concentration of orbitals on adjacent atoms in the same regions of space. Orbital overlap can lead to bond formation. Linus Pauling explained the importance of orbital overlap in the molecular bond angles observed through experimentation; it is the basis for orbital hybridization. As s orbitals are spherical (and have no directionality) and p orbitals are oriented 90° to each other, a theory was needed to explain why molecules such as methane (CH4) had observed bond angles of 109.5°.[1] Pauling proposed that s and p orbitals on the carbon atom can combine to form hybrids (sp3 in the case of methane) which are directed toward the hydrogen atoms. The carbon hybrid orbitals have greater overlap with the hydrogen orbitals, and can therefore form stronger C–H bonds.[2]

A quantitative measure of the overlap of two atomic orbitals ΨA and ΨB on atoms A and B is their overlap integral, defined as

where the integration extends over all space. The star on the first orbital wavefunction indicates the function's complex conjugate, which in general may be complex-valued.

Overlap matrix[edit]

The overlap matrix is a square matrix, used in quantum chemistry to describe the inter-relationship of a set of basis vectors of a quantum system, such as an atomic orbital basis set used in molecular electronic structure calculations. In particular, if the vectors are orthogonal to one another, the overlap matrix will be diagonal. In addition, if the basis vectors form an orthonormal set, the overlap matrix will be the identity matrix. The overlap matrix is always n×n, where n is the number of basis functions used. It is a kind of Gramian matrix.

In general, each overlap matrix element is defined as an overlap integral:

where

is the j-th basis ket (vector), and
is the j-th wavefunction, defined as :.

In particular, if the set is normalized (though not necessarily orthogonal) then the diagonal elements will be identically 1 and the magnitude of the off-diagonal elements less than or equal to one with equality if and only if there is linear dependence in the basis set as per the Cauchy–Schwarz inequality. Moreover, the matrix is always positive definite; that is to say, the eigenvalues are all strictly positive.

See also[edit]

References[edit]

  1. ^ Anslyn, Eric V./Dougherty, Dennis A. (2006). Modern Physical Organic Chemistry. University Science Books.
  • ^ Pauling, Linus. (1960). The Nature Of The Chemical Bond. Cornell University Press.
  • Quantum Chemistry: Fifth Edition, Ira N. Levine, 2000


  • t
  • e

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Orbital_overlap&oldid=1193479794"

    Categories: 
    Quantum chemistry
    Matrices
    Chemical bonding
    Molecular geometry
    Quantum chemistry stubs
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    All stub articles
     



    This page was last edited on 4 January 2024, at 01:19 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki