Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Below 1 W  





2 1 to 102W  





3 103to 108W  





4 109to 1014W  





5 1015to 1026W  





6 Over 1027W  





7 See also  





8 Notes  





9 References  














Orders of magnitude (power)






Deutsch
Français

Slovenščina
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


This page lists examples of the powerinwatts produced by various sources of energy. They are grouped by orders of magnitude from small to large.

Below 1 W

[edit]
Factor (watts) SI prefix Value (watts) Value (decibel-milliwatts) Item
10−50 5.4 × 10−50 −463 dBm astro: Hawking radiation power of the ultramassive black hole TON 618.[1][2]
10−27 ronto- (rW) 1.64×10−27 −238 dBm phys: approximate power of gravitational radiation emitted by a 1000 kg satellite in geosynchronous orbit around the Earth.
10−24 yocto- (yW) 1×10−24 −210 dBm
10−21 zepto- (zW) 1×10−21 −180 dBm biomed: approximate lowest recorded power consumption of a deep-subsurface marine microbe[3]
10−20 1×10−20 −170 dBm tech: approximate power of Galileo space probe's radio signal (when at Jupiter) as received on earth by a 70-meter DSN antenna.
10−18 atto- (aW) 1×10−18 −150 dBm phys: approximate power scale at which operation of nanoelectromechanical systems are overwhelmed by thermal fluctuations.[4]
10−16 1×10−16 −130 dBm tech: the GPS signal strength measured at the surface of the Earth.[clarification needed][5]
10−16 2×10−16 −127 dBm biomed: approximate theoretical minimum luminosity detectable by the human eye under perfect conditions
10−15 femto- (fW) 2.5×10−15 −116 dBm tech: minimum discernible signal at the antenna terminal of a good FM radio receiver
10−14 1×10−14 −110 dBm tech: approximate lower limit of power reception on digital spread-spectrum cell phones
10−12 pico- (pW) 1×10−12 −90 dBm biomed: average power consumption of a human cell
10−11 1.84×10−11 −77 dBm phys: power lost in the form of synchrotron radiation by a proton revolving in the Large Hadron Collider at 7000 GeV[6]
2.9×10−11 −72 dBm astro: power per square meter received from Proxima Centauri, the closest star known
10−10 1×10−10 −68 dBm astro: estimated total Hawking radiation power of all black holes in the observable universe.[7][8][9]
1.5×10−10 −68 dBm biomed: power entering a human eye from a 100-watt lamp 1 km away
10−9 nano- (nW) 2–15×10−9 −57 dBm to −48 dBm tech: power consumption of 8-bit PIC microcontroller chips when in "sleep" mode
10−6 micro- (μW) 1×10−6 −30 dBm tech: approximate consumption of a quartz or mechanical wristwatch
3×10−6 −25 dBm astro: cosmic microwave background radiation per square meter
10−5 5×10−5 −13 dBm biomed: sound power incident on a human eardrum at the threshold intensity for pain (500 mW/m2).
10−3 milli- (mW) 1.55×10−3 −4.7 dBm astro: power per square meter received from the Sun by Sedna at its aphelion
5×10−3 7 dBm tech: laser in a CD-ROM drive
5–10×10−3 7 dBm to 10 dBm tech: laser in a DVD player
10−2 centi- (cW) 7×10−2 18 dBm tech: antenna power in a typical consumer wireless router
10−1 deci- (dW) 1.2×10−1 21 dBm astro: total proton decay power of Earth, assuming the half life of protons to take on the value 1035 years.[10][11]
5×10−1 27 dBm tech: maximum allowed carrier output power of an FRS radio

1 to 102W

[edit]
Factor (watts) SI prefix Value (watts) Item
100 W 1 tech: cellphone camera light[12]
1.508 astro: power per square metre received from the SunatNeptune's aphelion[13]
2 tech: maximum allowed carrier power output of a MURS radio
4 tech: the power consumption of an incandescent night light
4 tech: maximum allowed carrier power output of a 10-meter CB radio
7 tech: the power consumption of a typical Light-emitting diode (LED) light bulb
8 tech: human-powered equipment using a hand crank.[14]
101 deca- (daW) 1.4 × 101 tech: the power consumption of a typical household compact fluorescent light bulb
2–4 × 101 biomed: approximate power consumption of the human brain[15]
3–4 × 101 tech: the power consumption of a typical household fluorescent tube light
6 × 101 tech: the power consumption of a typical household incandescent light bulb
102 hecto- (hW) 1 × 102 biomed: approximate basal metabolic rate of an adult human body[16]
1.2 × 102 tech: electric power output of 1 m2 solar panel in full sunlight (approx. 12% efficiency), at sea level
1.3 × 102 tech: peak power consumption of a Pentium 4 CPU
2 × 102 tech: stationary bicycle average power output[17][18]
2.76 × 102 astro: fusion power output of 1 cubic meter of volume of the Sun's core.[19]
2.9 × 102 units: approximately 1000 BTU/hour
3 × 102 tech: PC GPU Nvidia GeForce RTX 4080 peak power consumption[20]
4 × 102 tech: legal limit of power output of an amateur radio station in the United Kingdom
5 × 102 biomed: power output (useful work plus heat) of a person working hard physically
7.457 × 102 units:1horsepower[21]
7.5 × 102 astro: approximately the amount of sunlight falling on a square metre of the Earth's surface at noon on a clear day in March for northern temperate latitudes
9.09 × 102 biomed: peak output power of a healthy human (non-athlete) during a 30-second cycle sprint at 30.1 degree Celsius.[22]

103 to 108W

[edit]
103 kilo- (kW) 1–3 × 103W tech: heat output of a domestic electric kettle
1.1 × 103W tech: power of a microwave oven
1.366 × 103W astro: power per square meter received from the Sun at the Earth's orbit
1.5 × 103W tech: legal limit of power output of an amateur radio station in the United States
up to 2 × 103W biomed: approximate short-time power output of sprinting professional cyclists and weightlifters doing snatch lifts
2.4 × 103W geo: average power consumption per person worldwide in 2008 (21,283 kWh/year)
3.3–6.6 × 103W eco: average photosynthetic power output per square kilometer of ocean[23]
3.6 × 103W tech: synchrotron radiation power lost per ring in the Large Hadron Collider at 7000 GeV[6]
104 1–5 × 104W tech: nominal powerofclear channel AM[24]
1.00 × 104W eco: average power consumption per person in the United States in 2008 (87,216 kWh/year)
1.4 × 104W tech: average power consumption of an electric car on EPA's Highway test schedule[25][26]
1.45 × 104W astro: power per square metre received from the SunatMercury's orbit at perihelion
1.6–3.2 × 104W eco: average photosynthetic power output per square kilometer of land[23]
3 × 104W tech: power generated by the four motors of GEN H-4 one-man helicopter
4–20 × 104W tech: approximate range of peak power output of typical automobiles (50-250 hp)
5–10 × 104W tech: highest allowed ERP for an FM band radio station in the United States[27]
105 1.67 × 105W tech: power consumption of UNIVAC 1 computer
2.5–8 × 105W tech: approximate range of power output of 'supercars' (300 to 1000 hp)
4.5 × 105W tech: approximate maximum power output of a large 18-wheeler truck engine (600 hp)
106 mega- (MW) 1.3 × 106W tech: power output of P-51 Mustang fighter aircraft
1.9 × 106W astro: power per square meter potentially received by Earth at the peak of the Sun's red giant phase
2.0 × 106W tech: peak power output of GE's standard wind turbine
2.4 × 106W tech: peak power output of a Princess Coronation class steam locomotive (approx 3.3K EDHP on test) (1937)
2.5 × 106W biomed: peak power output of a blue whale
3 × 106W tech: mechanical power output of a diesel locomotive
4.4 × 106W tech: total mechanical power output of Titanic's coal-fueled steam engines[28]
7 × 106W tech: mechanical power output of a Top Fuel dragster
8 × 106W tech: peak power output of the MHI Vestas V164, the world's largest offshore wind turbine
107 1 × 107W tech: highest ERP allowed for an UHF television station
1.03 × 107W geo: electrical power output of Togo
1.22 × 107W tech: approx power available to a Eurostar 20-carriage train
1.5 × 107W tech: electrical power consumption of Sunway TaihuLight, the most powerful supercomputer in China
1.6 × 107W tech: rate at which a typical gasoline pump transfers chemical energy to a vehicle
2.6 × 107W tech: peak power output of the reactor of a Los Angeles-class nuclear submarine
7.5 × 107W tech: maximum power output of one GE90 jet engine as installed on the Boeing 777
108 1.04 × 108W tech: power producing capacity of the Niagara Power Plant, the first electrical power plant in history
1.4 × 108W tech: average power consumption of a Boeing 747 passenger aircraft
1.9 × 108W tech: peak power output of a Nimitz-class aircraft carrier
5 × 108W tech: typical power output of a Fossil fuel power station
9 × 108W tech: electric power output of a CANDU nuclear reactor
9.59 × 108W geo: average electrical power consumption of Zimbabwe in 1998
9.86 × 108W astro: approximate solar power received by the dwarf planet Sedna at its aphelion (937 AU)

The productive capacity of electrical generators operated by utility companies is often measured in MW. Few things can sustain the transfer or consumption of energy on this scale; some of these events or entities include: lightning strikes, naval craft (such as aircraft carriers and submarines), engineering hardware, and some scientific research equipment (such as supercolliders and large lasers).

For reference, about 10,000 100-watt lightbulbs or 5,000 computer systems would be needed to draw 1 MW. Also, 1 MW is approximately 1360 horsepower. Modern high-power diesel-electric locomotives typically have a peak power of 3–5 MW, while a typical modern nuclear power plant produces on the order of 500–2000 MW peak output.

109 to 1014W

[edit]
109 giga- (GW)

1.3 × 109

tech: electric power output of Manitoba Hydro Limestone hydroelectric generating station
2.074 × 109 tech: peak power generation of Hoover Dam
2.1 × 109 tech: peak power generation of Aswan Dam
3.4 × 109 tech: estimated power consumption of the Bitcoin network in 2017[29]
4.116 × 109 tech: installed capacity of Kendal Power Station, the world's largest coal-fired power plant.
5.824 × 109 tech: installed capacity of the Taichung Power Plant, the largest coal-fired power plant in Taiwan and fourth largest of its kind. It was the single most polluting power plant on Earth in 2009.[30][31]
7.965 × 109 tech: installed capacity of the largest nuclear power plant, the Kashiwazaki-Kariwa Nuclear Power Plant, before it was permanently shut down in the wake of the Fukushima nuclear disaster.
1010 1.17 × 1010 tech: power produced by the Space Shuttle in liftoff configuration (9.875 GW from the SRBs; 1.9875 GW from the SSMEs.)[32]
1.26 × 1010 tech: electrical power generation of the Itaipu Dam
1.27 × 1010 geo: average electrical power consumption of Norway in 1998
2.25 × 1010 tech: peak electrical power generation of the Three Gorges Dam, the power plant with the world's largest generating capacity of any type.[33]
2.24 × 1010 tech: peak power of all German solar panels (at noon on a cloudless day), researched by the Fraunhofer ISE research institute in 2014[34]
5.027 × 1010 tech: peak electrical power consumption of California Independent System Operator users between 1998 and 2018, recorded at 14:44 Pacific Time, July 24, 2006.[35]
5.22 × 1010 tech: China total nuclear power capacity as of 2022.[36]
5.5 × 1010 tech: peak daily electrical power consumption of Great Britain in November 2008.[37]
7.31 × 1010 tech: total installed power capacity of Turkey on December 31, 2015.[38]
9.55 × 1010 tech: United States total nuclear power capacity as of 2022.[36]
1011 1.016 × 1011 tech: peak electrical power consumption of France (February 8, 2012 at 7:00 pm)
1.12 × 1011 tech: United States total installed solar capacity as of 2022.[39]
1.41 × 1011 tech: United States total wind turbine capacity in 2022.[39]
1.66 × 1011 tech: average power consumption of the first stage of the Saturn V rocket.[40][41]
3.66 × 1011 tech: China total wind turbine capacity in 2022.[39]
3.92 × 1011 tech: China total installed solar capacity as of 2022.[39]
7 × 1011 biomed: humankind basal metabolic rate as of 2013 (7 billion people).
8.99 × 1011 tech: worldwide wind turbine capacity at end of 2022.[39]
1012 tera- (TW) 1.062 × 1012 tech: worldwide installed solar capacity at end of 2022.[39]
2 × 1012 astro: approximate power generated between the surfaces of Jupiter and its moon Io due to Jupiter's tremendous magnetic field.[42]
3.34 × 1012 geo: average total (gas, electricity, etc.) power consumption of the US in 2005[43]
1013 2.04 × 1013 tech: average rate of power consumption of humanity over 2022.[44]
4.7 × 1013 geo: average total heat flow at Earth's surface which originates from its interior.[45] Main sources are roughly equal amounts of radioactive decay and residual heat from Earth's formation.[46]
8.8 × 1013 astro: luminosity per square meter of the hottest normal star known, WR 102
5–20 × 1013 weather: rate of heat energy release by a hurricane[citation needed]
1014 1.4 × 1014 eco: global net primary production (= biomass production) via photosynthesis[47]
2.9 × 1014 tech: the power the Z machine reaches in 1 billionth of a second when it is fired[citation needed]
3 × 1014 weather: Hurricane Katrina's rate of release of latent heat energy into the air.[48]
3 × 1014 tech: power reached by the extremely high-power Hercules laser from the University of Michigan.[citation needed]
4.6 × 1014 geo: estimated rate of net global heating, evaluated as Earth's energy imbalance, from 2005 to 2019.[49][50] The rate of ocean heat uptake approximately doubled over this period.[51]

1015 to 1026W

[edit]
1015 peta- ~2 × 1.00 × 1015W tech: Omega EP laser power at the Laboratory for Laser Energetics. There are two separate beams that are combined.
1.4 × 1015W geo: estimated heat flux transported by the Gulf Stream.
5 × 1015W geo: estimated net heat flux transported from Earth's equator and towards each pole. Value is a latitudinal maximum arising near 40° in each hemisphere.[52][53]
7 × 1015W tech: worlds most powerful laser in operation (claimed on February 7, 2019, by Extreme Light Infrastructure – Nuclear Physics (ELI-NP) at Magurele, Romania)[54]
1016 1.03 × 1016W tech: world's most powerful laser pulses (claimed on October 24, 2017, by SULFofShanghai Institute of Optics and Fine Mechanics).[55]
1–10 × 1016W tech: estimated total power output of a Type-I civilization on the Kardashev scale.[56]
1017 1.73 × 1017W astro: total power received by Earth from the Sun[57]
2 × 1017W tech: planned peak power of Extreme Light Infrastructure laser[58]
4.6 × 1017W astro: total internal heat flux of Jupiter[59]
1018 exa- (EW) In a keynote presentation, NIF & Photon Science Chief Technology Officer Chris Barty described the "Nexawatt" Laser, an exawatt (1,000-petawatt) laser concept based on NIF technologies, on April 13 at the SPIE Optics + Optoelectronics 2015 Conference in Prague. Barty also gave an invited talk on "Laser-Based Nuclear Photonics" at the SPIE meeting.[60]
1021 zetta- (ZW)
1022 5.31 × 1022W astro: approximate luminosityof2MASS J0523−1403, the least luminous star known.[61]
1023 4.08 × 1023W astro: approximate luminosity of Wolf 359
1024 yotta- (YW) 5.3 × 1024W tech: estimated peak power of the Tsar Bomba hydrogen bomb detonation[62]
9.8 × 1024W astro: approximate luminosity of Sirius b, Sirius's white dwarf companion.[63][64]
1026 1 × 1026W tech: power generating capacity of a Type-II civilization on the Kardashev scale.[56]
1.87 × 1026W astro: approximate luminosity of Tau Ceti, the nearest solitary G-type star.
3.828 × 1026W astro: luminosity of the Sun,[65] our home star
7.67 × 1026W astro: approximate luminosity of Alpha Centauri, the closest (triple) star system.[66]
1027 ronna- (RW) 9.77 × 1027W astro: approximate luminosity of Sirius, the visibly brightest star as viewed from Earth.[67]
1028 6.51 × 1028W astro: approximate luminosity of Arcturus, a solar-mass red giant[68]

Over 1027W

[edit]
1030 quetta- (QW) 1.99 × 1030W astro: peak luminosity of the Sun in its thermally-pulsing, late AGB phase (≈5200x present)[69]
4.1 × 1030W astro: approximate luminosity of Canopus[70]
1031 2.53 × 1031W astro: approximate luminosity of the Beta Centauri triple star system[71]
3.3 × 1031W astro: approximate luminosity of Betelgeuse, a highly-evolved red supergiant
1032 1.23 × 1032W astro: approximate luminosity of Deneb
1033 1.26 × 1033 W astro: approximate luminosity of the Pistol Star, an LBV which emits in 10 seconds the Sun's annual energy output
1.79 × 1033 W astro: approximate luminosity of R136a1,[72] a massive Wolf-Rayet star and the most luminous single star known
2.1 × 1033 W astro: approximate luminosity of the Eta Carinae system,[73] a highly elliptical binary of two supergiant blue stars orbiting each other
1034 4 × 1034W tech: approximate power used by a type III civilization in the Kardashev scale.[56]
1036 5.7 × 1036W astro: approximate luminosity of the Milky Way galaxy[74][75]
1037 2 × 1037W astro: approximate luminosity of the Local Group, the volume enclosed by our gravitational cosmic horizon[76][77]
4 × 1037W astro: approximate internal luminosity of the Sun for a few seconds as it undergoes a helium flash.[78][79]
1038 2.2 × 1038W astro: approximate luminosity of the extremely luminous supernova ASASSN-15lh[80][81]
1039 1 × 1039W astro: average luminosity of a quasar
1.57 × 1039 W astro: approximate luminosity of 3C273, the brightest quasar seen from Earth[82]
1040 5 × 1040W astro: approximate peak luminosity of the energetic fast blue optical transient CSS161010[83]
1041 1 × 1041W astro: approximate luminosity of the most luminous quasars in our universe, e.g., APM 08279+5255 and HS 1946+7658.[84]
1042 1.7 × 1042 W astro: approximate luminosity of the Laniakea Supercluster[85][86]
3 × 1042W astro: approximate luminosity of an average gamma-ray burst[87]
1043 2.2 × 1043W astro: average stellar luminosity in one cubic gigalight-year of space
1045
1046 1 × 1046W astro: record for maximum beaming-corrected intrinsic luminosity ever achieved by a gamma-ray burst[88]
1047 7.519 × 1047W phys: Hawking radiation luminosity of a Planck mass black hole[89]
1048 9.5 × 1048W astro: luminosity of the entire Observable universe[90] ≈ 24.6 billion trillion solar luminosity.
1049 3.6 × 1049W astro: peak gravitational wave radiative power of GW150914, the merger event of two distant stellar-mass black holes. It is attributed to the first observation of gravitational waves.[91]
1052 3.63 × 1052W phys: the unit of power as expressed under the Planck units,[note 1] at which the definition of power under modern conceptualizations of physics breaks down. Equivalent to one Planck mass-energy per Planck time.

See also

[edit]

Notes

[edit]
  1. ^

References

[edit]
  1. ^ Ge, Xue; Zhao, Bi-Xuan; Bian, Wei-Hao; Frederick, Green Richard (March 2019). "The Blueshift of the C iv Broad Emission Line in QSOs". The Astronomical Journal. 157 (4): 148. arXiv:1903.08830. Bibcode:2019AJ....157..148G. doi:10.3847/1538-3881/ab0956. ISSN 1538-3881.
  • ^ Calculated using M_BH = 4.07e+10 M_sol.
  • ^ "Transcript of "This deep-sea mystery is changing our understanding of life"". February 6, 2018.
  • ^ "Nanoelectromechanical systems face the future". Physics World. February 1, 2001.
  • ^ Warner, Jon S; Johnston, Roger G (December 2003). "GPS Spoofing Countermeasures". Archived from the original on February 7, 2012. (This article was originally published as Los Alamos research paper LAUR-03-6163)
  • ^ a b CERN. Beam Parameters and Definitions". Table 2.2. Retrieved September 13, 2008
  • ^ "HubbleSite: Black Holes: Gravity's Relentless Pull interactive: Encyclopedia". January 6, 2024. Archived from the original on January 6, 2024. Retrieved January 6, 2024.
  • ^ 10 M_sol BH Hawking radiation power: https://www.wolframalpha.com/input?i=hawking+radiation+calculate&assumption=%7B%22FS%22%7D+-%3E+%7B%7B%22BlackHoleHawkingRadiationPower%22%2C+%22P%22%7D%2C+%7B%22BlackHoleHawkingRadiationPower%22%2C+%22M%22%7D%7D&assumption=%7B%22F%22%2C+%22BlackHoleHawkingRadiationPower%22%2C+%22M%22%7D+-%3E%2210*solar+mass%22
  • ^ Fermi estimate: Mass of observable universe / mass of Milky Way ≈ 1e+12. Number of stars in the Milky Way ≈ 1e+11. Proportion of stars that evolve into a black hole ≈ 1e-3. Hawking radiation power of a 10 Solar mass black hole: ≈ 1e-30 W. 12 + 11 - 3 - 30 = 23 - 30 = –10.
  • ^ Nath, Pran; Perez, Pavel Fileviez (April 2007). "Proton stability in grand unified theories, in strings, and in branes". Physics Reports. 441 (5–6): 191–317. arXiv:hep-ph/0601023. Bibcode:2007PhR...441..191N. doi:10.1016/j.physrep.2007.02.010. S2CID 119542637.
  • ^ Calculated: https://www.wolframalpha.com/input?i=earth+mass%2Fproton+mass*ln2%2F%281e35+year%29*proton+mass*c%5E2
  • ^ "EETimes - Driving LED lighting in mobile phones and PDAs". EETimes. June 12, 2008. Retrieved December 2, 2021.
  • ^ "Solar irradiance (W/m2), Bulk Parameters, Neptune Fact Sheet, NASA NSSDCA". NASA GSFC. December 23, 2021. Retrieved June 8, 2022.
  • ^ dtic.mil – harvesting energy with hand-crank generators to support dismounted soldier missions, 2004-12-xx
  • ^ Glenn Elert. "Power of a Human Brain - The Physics Factbook". Hypertextbook.com. Retrieved September 13, 2018.
  • ^ Maury Tiernan (November 1997). "The Comfort Zone" (PDF). Geary Pacific Corporation. Archived from the original (PDF) on December 17, 2008. Retrieved March 17, 2008.
  • ^ alternative-energy-news.info – The Pedal-A-Watt Stationary Bicycle Generator, January 11, 2010
  • ^ econvergence.net – The Pedal-A-Watt Bicycle Generator Stand Buy one or build with detailed plans., 2012
  • ^ "Is the power output at the core of the sun about the same as a compost pile (about 300 watts)?". Astronomy Stack Exchange. Retrieved January 6, 2024.
  • ^ Hagedoorn, Hilbert (November 15, 2022). "GeForce RTX 4080 Founder edition review - Hardware setup | Power consumption". Guru3D.com. Guru3D. Retrieved March 3, 2023.
  • ^ DOE Fundamentals Handbook, Classical Physics. USDOE. 1992. pp. CP–05, Page 9. OSTI 10170060.
  • ^ Ball, D; Burrows C; Sargeant AJ (March 1999). "Human power output during repeated sprint cycle exercise: the influence of thermal stress". Eur J Appl Physiol Occup Physiol. 79 (4): 360–6. doi:10.1007/s004210050521. PMID 10090637. S2CID 9825954.
  • ^ a b "Chapter 1 - Biological energy production". Fao.org. Retrieved September 13, 2018.
  • ^ "AM Station Classes, and Clear, Regional, and Local Channels". December 11, 2015.
  • ^ "Detailed Fuel Economy Test Information". EPA. Retrieved February 17, 2019.
  • ^ "Fuel Economy Data". EPA. Retrieved February 17, 2019.
  • ^ "FM Broadcast Station Classes and Service Contours". December 11, 2015.
  • ^ "The Titanic's engine was a pretty marvelous innovation". The Manual. January 8, 2023. Retrieved January 6, 2024.
  • ^ Alex Hern. "Bitcoin mining consumes more electricity a year than Ireland | Technology". The Guardian. Retrieved September 13, 2018.
  • ^ Grant, Don; Zelinka, David; Mitova, Stefania (August 24, 2021). "Reducing CO2emissions by targeting the world's hyper-polluting power plants*". Environmental Research Letters. 16 (9): 094022. doi:10.1088/1748-9326/ac13f1. ISSN 1748-9326.
  • ^ See bottom half of Table 2: "Top ten polluting power plants in 2018 and 2009"
  • ^ Glenn Elert (February 11, 2013). "Power of a Space Shuttle - The Physics Factbook". Hypertextbook.com. Retrieved September 13, 2018.
  • ^ "The 22.5GW Power Plant - What You Should Know About Three Gorges, China". January 6, 2024. Archived from the original on January 6, 2024. Retrieved January 6, 2024.
  • ^ Rachael Black (June 23, 2014). "Germany can now produce half its energy from solar | Richard Dawkins Foundation". Richarddawkins.net. Retrieved September 13, 2018.
  • ^ "California ISO Peak Load History 1998 through 2018" (PDF).
  • ^ a b "PRIS - Miscellaneous reports - Nuclear Share". January 6, 2024. Archived from the original on January 6, 2024. Retrieved January 6, 2024.
  • ^ "National Grid electricity consumption statistics". Archived from the original on December 5, 2008. Retrieved November 27, 2008.
  • ^ "Turkish Electricity Transmission Company's Installed Capacity Statistics".
  • ^ a b c d e f "Yearly electricity data". Ember. January 4, 2024. Retrieved January 6, 2024.
  • ^ Annamalai, Kalyan; Ishwar Kanwar Puri (2006). Combustion Science and Engineering. CRC Press. p. 851. ISBN 978-0-8493-2071-2.
  • ^ "File:Saturn v schematic.jpg - Wikimedia Commons". Commons.wikimedia.org. Retrieved September 13, 2018.
  • ^ [1] Archived May 29, 2009, at the Wayback Machine – Nasa: Listening to shortwave radio signals from Jupiter
  • ^ U.S energy consumption by source, 1949–2005, Energy Information Administration. Retrieved May 25, 2007
  • ^ Ritchie, Hannah; Rosado, Pablo; Roser, Max (January 4, 2024). "Energy Production and Consumption". Our World in Data.
  • ^ Davies, J. H.; Davies, D. R. (February 22, 2010). "Earth's surface heat flux". Solid Earth. 1 (1): 5–24. Bibcode:2010SolE....1....5D. doi:10.5194/se-1-5-2010. ISSN 1869-9529.
  • ^ Donald L. Turcotte; Gerald Schubert (March 25, 2002). Geodynamics. Cambridge University Press. ISBN 978-0-521-66624-4.
  • ^ "Earth's energy flow - Energy Education". energyeducation.ca. Retrieved August 5, 2019.
  • ^ "ATMO336 - Fall 2005". www.atmo.arizona.edu. Retrieved November 18, 2020.
  • ^ Trenberth, Kevin E.; Cheng, Lijing (July 4, 2022). "A perspective on climate change from Earth's energy imbalance". Environmental Research: Climate. 1 (1): 3001. doi:10.1088/2752-5295/ac6f74.
  • ^ von Schuckman, K.; Cheng, L.; Palmer, M. D.; Hansen, J.; et al. (September 7, 2020). "Heat stored in the Earth system: where does the energy go?". Earth System Science Data. 12 (3): 2013–2041. Bibcode:2020ESSD...12.2013V. doi:10.5194/essd-12-2013-2020. hdl:20.500.11850/443809.
  • ^ Loeb, Norman G.; Johnson, Gregory C.; Thorsen, Tyler J.; Lyman, John M.; et al. (June 15, 2021). "Satellite and Ocean Data Reveal Marked Increase in Earth's Heating Rate". Geophysical Research Letters. 48 (13). Bibcode:2021GeoRL..4893047L. doi:10.1029/2021GL093047. S2CID 236233508.
  • ^ Trenberth, Kevin E.; Caron, Julie E. (August 15, 2001). "Estimates of Meridional Atmosphere and Ocean Heat Transports". Journal of Climate. 14 (16): 3433–3443. Bibcode:2001JCli...14.3433T. doi:10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2.
  • ^ Wunsch, Carl (November 1, 2005). "The Total Meridional Heat Flux and Its Oceanic and Atmospheric Partition". Journal of Climate. 18 (21): 4374–4380. Bibcode:2005JCli...18.4374W. doi:10.1175/JCLI3539.1.
  • ^ "Scientists create record-breaking 10-petawatt laser that can vaporize matter". TechSpot. May 7, 2019. Retrieved November 24, 2020.
  • ^ "Super Laser Sets Another Record For Peak Power". Shanghai Municipal Government. October 26, 2017.
  • ^ a b c Lemarchand, Guillermo A. "Detectability of Extraterrestrial Technological Activities". coseti.org. Columbus Optical SETI Observatory. Archived from the original on March 18, 2019. Retrieved October 23, 2004.
  • ^ Chandler, David L. (October 26, 2011). "Shining brightly". news.mit.edu. Massachusetts Institute of Technology. Retrieved January 31, 2023.
  • ^ eli-beams.eu: Lasers Archived March 5, 2015, at the Wayback Machine
  • ^ Li, Liming; Jiang, X.; West, R. A.; Gierasch, P. J.; Perez-Hoyos, S.; Sanchez-Lavega, A.; Fletcher, L. N.; Fortney, J. J.; Knowles, B.; Porco, C. C.; Baines, K. H.; Fry, P. M.; Mallama, A.; Achterberg, R. K.; Simon, A. A. (September 13, 2018). "Less absorbed solar energy and more internal heat for Jupiter". Nature Communications. 9 (1): 3709. Bibcode:2018NatCo...9.3709L. doi:10.1038/s41467-018-06107-2. ISSN 2041-1723. PMC 6137063. PMID 30213944. S2CID 52274616.
  • ^ "Papers and Presentations". Lasers.llnl.gov. January 28, 2016. Retrieved September 13, 2018.
  • ^ Filippazzo, Joseph C.; Rice, Emily L.; Faherty, Jacqueline; Cruz, Kelle L.; Van Gordon, Mollie M.; Looper, Dagny L. (September 10, 2015). "Fundamental Parameters and Spectral Energy Distributions of Young and Field Age Objects with Masses Spanning the Stellar to Planetary Regime". The Astrophysical Journal. 810 (2): 158. arXiv:1508.01767. Bibcode:2015ApJ...810..158F. doi:10.1088/0004-637X/810/2/158. ISSN 1538-4357. S2CID 89611607.
  • ^ Matt Ford (September 15, 2006). "The biggest explosion in our solar system". Ars Technica. Retrieved September 13, 2018.
  • ^ "Sirius Data". January 6, 2024. Archived from the original on January 6, 2024. Retrieved January 6, 2024.
  • ^ Calculated: L = Stefan-Boltzmann constant × (Sirius b surface temperature)^4 × 4pi × (radius)^2 = 5.67e-8 × 25200^4 × 4pi × (5.84e+6)^2 = 9.8e+24 W.
  • ^ "The IAU Strategic Plan 2010-2020: Astronomy for Development" (PDF). Archived from the original (PDF) on January 6, 2024. Retrieved January 6, 2024.
  • ^ Akeson, Rachel; Beichman, Charles; Kervella, Pierre; Fomalont, Edward; Benedict, G. Fritz (July 1, 2021). "Precision Millimeter Astrometry of the $\alpha$ Centauri AB System". The Astronomical Journal. 162 (1): 14. arXiv:2104.10086. Bibcode:2021AJ....162...14A. doi:10.3847/1538-3881/abfaff. ISSN 0004-6256.
  • ^ Liebert, James; Young, Patrick A.; Arnett, David; Holberg, J. B.; Williams, Kurtis A. (September 1, 2005). "The Age and Progenitor Mass of Sirius B". The Astrophysical Journal. 630 (1): L69–L72. arXiv:astro-ph/0507523. Bibcode:2005ApJ...630L..69L. doi:10.1086/462419. ISSN 0004-637X. S2CID 8792889.
  • ^ Schroder, Klaus-Peter; Cuntz, Manfred (April 2007). "A critical test of empirical mass loss formulae applied to individual giants and supergiants". Astronomy & Astrophysics. 465 (2): 593–601. arXiv:astro-ph/0702172. Bibcode:2007A&A...465..593S. doi:10.1051/0004-6361:20066633. ISSN 0004-6361. S2CID 55901104.
  • ^ Sackmann, I. -Juliana; Boothroyd, Arnold I.; Kraemer, Kathleen E. (November 1, 1993). "Our Sun. III. Present and Future". The Astrophysical Journal. 418: 457. Bibcode:1993ApJ...418..457S. doi:10.1086/173407. ISSN 0004-637X.
  • ^ Cruzalèbes, P.; Jorissen, A.; Rabbia, Y.; Sacuto, S.; Chiavassa, A.; Pasquato, E.; Plez, B.; Eriksson, K.; Spang, A.; Chesneau, O. (September 1, 2013). "Fundamental parameters of 16 late-type stars derived from their angular diameter measured with VLTI/AMBER". Monthly Notices of the Royal Astronomical Society. 434 (1): 437–450. arXiv:1306.3288. doi:10.1093/mnras/stt1037. ISSN 0035-8711.
  • ^ Shultz, M. E.; Wade, G. A.; Rivinius, Th; Alecian, E.; Neiner, C.; Petit, V.; Wisniewski, J. P.; MiMeS, the; Collaborations, BinaMIcS (May 11, 2019). "The Magnetic Early B-type Stars II: stellar atmospheric parameters in the era of Gaia". Monthly Notices of the Royal Astronomical Society. 485 (2): 1508–1527. arXiv:1902.02713. doi:10.1093/mnras/stz416. ISSN 0035-8711.
  • ^ Kalari, Venu M.; Horch, Elliott P.; Salinas, Ricardo; Vink, Jorick S.; Andersen, Morten; Bestenlehner, Joachim M.; Rubio, Monica (August 1, 2022). "Resolving the Core of R136 in the Optical". The Astrophysical Journal. 935 (2): 162. arXiv:2207.13078. Bibcode:2022ApJ...935..162K. doi:10.3847/1538-4357/ac8424. ISSN 0004-637X.
  • ^ Mehner, A.; de Wit, W.-J.; Asmus, D.; Morris, P. W.; Agliozzo, C.; Barlow, M. J.; Gull, T. R.; Hillier, D. J.; Weigelt, G. (October 2019). "Mid-infrared evolution of eta Car from 1968 to 2018". Astronomy & Astrophysics. 630: L6. arXiv:1908.09154. doi:10.1051/0004-6361/201936277. ISSN 0004-6361. S2CID 202149820.
  • ^ "Galaxy Properties". January 6, 2024. Archived from the original on January 6, 2024. Retrieved January 6, 2024.
  • ^ Calculated: 1.5e+10 L_sol * 3.828e+26 W/L_sol = 5.7e+36 W
  • ^ van den Bergh, Sidney (January 1, 1999). "The local group of galaxies". Astronomy and Astrophysics Review. 9: 273–318. doi:10.1007/s001590050019. ISSN 0935-4956.
  • ^ Estimated to have an absolute magnitude of -22.
  • ^ Deupree, Robert G.; Wallace, Richard K. (June 1, 1987). "The Core Helium Flash and Surface Abundance Anomalies". The Astrophysical Journal. 317: 724. Bibcode:1987ApJ...317..724D. doi:10.1086/165319. ISSN 0004-637X.
  • ^ Peak helium flash luminosity ≈ 100 billion times normal energy production.
  • ^ Dong, Subo; Shappee, B. J.; Prieto, J. L.; Jha, S. W.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Thompson, T. A.; Morrell, N.; Thompson, I. B.; Basu, U. (January 15, 2016). "ASASSN-15lh: A highly super-luminous supernova". Science. 351 (6270): 257–260. arXiv:1507.03010. Bibcode:2016Sci...351..257D. doi:10.1126/science.aac9613. hdl:10533/231850. ISSN 0036-8075. PMID 26816375. S2CID 31444274.
  • ^ "The Incomprehensible Power of a Supernova | RealClearScience". www.realclearscience.com. Retrieved November 22, 2020.
  • ^ Calculated as: Solar luminosity × 10^(0.4 × (Sun absolute magnitude - 3C 273 absolute magnitude)) = 3.828e+26 × 10^(0.4 × (4.83 - (- 26.73))) = 3.828e+26 × 4.1e+12 = 1.57e+39 W.
  • ^ Coppejans, D. L.; Margutti, R.; Terreran, G.; Nayana, A. J.; Coughlin, E. R.; Laskar, T.; Alexander, K. D.; Bietenholz, M.; Caprioli, D.; Chandra, P.; Drout, M. (2020). "A mildly relativistic outflow from the energetic, fast-rising blue optical transient CSS161010 in a dwarf galaxy". The Astrophysical Journal. 895 (1): L23. arXiv:2003.10503. Bibcode:2020ApJ...895L..23C. doi:10.3847/2041-8213/ab8cc7. S2CID 214623364.
  • ^ Riechers, Dominik A.; Walter, Fabian; Carilli, Christopher L.; Lewis, Geraint F. (2009). "Imaging the Molecular Gas in Az= 3.9 Quasar Host Galaxy at 0."3 Resolution: a Central, Sub-kiloparsec Scale Star Formation Reservoir in Apm 08279+5255". The Astrophysical Journal. 690 (1): 463–485. arXiv:0809.0754. Bibcode:2009ApJ...690..463R. doi:10.1088/0004-637X/690/1/463. ISSN 0004-637X. S2CID 13959993.
  • ^ Tully, R. Brent; Courtois, Helene; Hoffman, Yehuda; Pomarède, Daniel (September 4, 2014). "The Laniakea supercluster of galaxies". Nature. 513 (7516): 71–73. arXiv:1409.0880. Bibcode:2014Natur.513...71T. doi:10.1038/nature13674. ISSN 0028-0836. PMID 25186900. S2CID 205240232.
  • ^ Calculated. Estimated assuming Laniakea to be a sphere 160 Mpc in diameter, according to p.4 of cited paper: Observable universe luminosity × (Laniakea Supercluster diameter / Observable universe diameter)^3 = 9.466e+48 W × (160 Mpc / 28.5 Gpc)^3 = 1.675e+42 ≈ 1.7e+42 W.
  • ^ Guetta, Dafne; Piran, Tsvi; Waxman, Eli (2005). "The Luminosity and Angular Distributions of Long-Duration Gamma-Ray Bursts". The Astrophysical Journal. 619 (1): 412–419. arXiv:astro-ph/0311488. Bibcode:2005ApJ...619..412G. doi:10.1086/423125. ISSN 0004-637X. S2CID 14741044.
  • ^ Frederiks, D. D.; Hurley, K.; Svinkin, D. S.; Pal'shin, V. D.; Mangano, V.; et al. (2013). "The Ultraluminous GRB 110918A". The Astrophysical Journal. 779 (2): 151. arXiv:1311.5734. Bibcode:2013ApJ...779..151F. doi:10.1088/0004-637X/779/2/151. ISSN 0004-637X. S2CID 118398826.
  • ^ Calculated: https://www.wolframalpha.com/input?i=hawking+radiation+calculate&assumption=%7B%22FS%22%7D+-%3E+%7B%7B%22BlackHoleHawkingRadiationPower%22%2C+%22P%22%7D%2C+%7B%22BlackHoleHawkingRadiationPower%22%2C+%22M%22%7D%7D&assumption=%7B%22F%22%2C+%22BlackHoleHawkingRadiationPower%22%2C+%22M%22%7D+-%3E%22planck+mass%22
  • ^ Calculated. Assuming isotropicity in composition and identical age since Big Bang within cosmological horizon, expressed as: Ordinary [baryonic] mass of observable universe / Ordinary mass of Milky Way × Luminosity of Milky Way. L_total = 1.5e+53 kg / 4.6e+10 M_sol * 1.5e+10 L_sol = 9.466e+48 W ≈ 9.5e+48 W.
  • ^ "GW150914: Factsheet" (PDF). www.ligo.org. Archived from the original (PDF) on January 6, 2024. Retrieved January 6, 2024.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Orders_of_magnitude_(power)&oldid=1233305468"

    Categories: 
    Orders of magnitude
    Power (physics)
    Units of power
    Hidden categories: 
    Webarchive template wayback links
    Articles with short description
    Short description is different from Wikidata
    Use mdy dates from September 2018
    Articles needing additional references from November 2020
    All articles needing additional references
    Wikipedia articles needing clarification from February 2011
    All articles with unsourced statements
    Articles with unsourced statements from January 2023
     



    This page was last edited on 8 July 2024, at 11:26 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki