Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Basics  





2 Vanishing moments, polynomial approximation and smoothness  



2.1  Examples  







3 References  














Orthogonal wavelet






فارسی
Français
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Anorthogonal wavelet is a wavelet whose associated wavelet transformisorthogonal. That is, the inverse wavelet transform is the adjoint of the wavelet transform. If this condition is weakened one may end up with biorthogonal wavelets.

Basics

[edit]

The scaling function is a refinable function. That is, it is a fractal functional equation, called the refinement equation (twin-scale relationordilation equation):

,

where the sequence ofreal numbers is called a scaling sequence or scaling mask. The wavelet proper is obtained by a similar linear combination,

,

where the sequence of real numbers is called a wavelet sequence or wavelet mask.

A necessary condition for the orthogonality of the wavelets is that the scaling sequence is orthogonal to any shifts of it by an even number of coefficients:

,

where is the Kronecker delta.

In this case there is the same number M=N of coefficients in the scaling as in the wavelet sequence, the wavelet sequence can be determined as . In some cases the opposite sign is chosen.

Vanishing moments, polynomial approximation and smoothness

[edit]

A necessary condition for the existence of a solution to the refinement equation is that there exists a positive integer A such that (see Z-transform):

The maximally possible power A is called polynomial approximation order (or pol. app. power) or number of vanishing moments. It describes the ability to represent polynomials up to degree A-1 with linear combinations of integer translates of the scaling function.

In the biorthogonal case, an approximation order Aof corresponds to A vanishing moments of the dual wavelet , that is, the scalar productsof with any polynomial up to degree A-1 are zero. In the opposite direction, the approximation order Ãof is equivalent to à vanishing moments of . In the orthogonal case, A and à coincide.

A sufficient condition for the existence of a scaling function is the following: if one decomposes , and the estimate

holds for some , then the refinement equation has a n times continuously differentiable solution with compact support.

Examples

[edit]
Expansion of this degree 3 polynomial and insertion of the 4 coefficients into the orthogonality condition results in The positive root gives the scaling sequence of the D4-wavelet, see below.

References

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Orthogonal_wavelet&oldid=1117256324"

Category: 
Orthogonal wavelets
Hidden categories: 
Articles with short description
Short description matches Wikidata
 



This page was last edited on 20 October 2022, at 19:03 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki