Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 History and use  





2 Interval size  





3 Scale diagram  





4 Chords of 31 equal temperament  





5 See also  





6 References  





7 External links  














31 equal temperament






Français
Nederlands

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Orwell comma)

31-ET on the regular diatonic tuning continuum at P5= 696.77 cents[1]

In music, 31 equal temperament, 31-ET, which can also be abbreviated 31-TET (31 tone ET) or 31-EDO (equal division of the octave), also known as tricesimoprimal, is the tempered scale derived by dividing the octave into 31 equal-sized steps (equal frequency ratios). Play Each step represents a frequency ratio of 312, or 38.71 cents (Play).

31-ET is a very good approximation of quarter-comma meantone temperament. More generally, it is a regular diatonic tuning in which the tempered perfect fifth is equal to 696.77 cents, as shown in Figure 1. On an isomorphic keyboard, the fingering of music composed in 31-ET is precisely the same as it is in any other syntonic tuning (such as 12-ET), so long as the notes are spelled properly—that is, with no assumption of enharmonicity.

History and use

[edit]

Division of the octave into 31 steps arose naturally out of Renaissance music theory; the lesser diesis— the ratio of an octave to three major thirds, 128:125 or 41.06 cents— was approximately one-fifth of a tone or two-fifths of a semitone. In 1555, Nicola Vicentino proposed an extended-meantone tuning of 31 tones. In 1666, Lemme Rossi first proposed an equal temperament of this order. In 1691, having discovered it independently, scientist Christiaan Huygens wrote about it also.[2] Since the standard system of tuning at that time was quarter-comma meantone, in which the fifth is tuned to 45, the appeal of this method was immediate, as the fifth of 31-ET, at 696.77 cents, is only 0.19 cent wider than the fifth of quarter-comma meantone. Huygens not only realized this, he went farther and noted that 31-ET provides an excellent approximation of septimal, or 7-limit harmony. In the twentieth century, physicist, music theorist and composer Adriaan Fokker, after reading Huygens's work, led a revival of interest in this system of tuning which led to a number of compositions, particularly by Dutch composers. Fokker designed the Fokker organ, a 31-tone equal-tempered organ, which was installed in Teyler's MuseuminHaarlem in 1951 and moved to Muziekgebouw aan 't IJ in 2010 where it has been frequently used in concerts since it moved.

Interval size

[edit]
21-Limit just intonation intervals approximated in 31-ET

Here are the sizes of some common intervals:

interval name size (steps) size (cents) midi just ratio just (cents) midi error
octave 31 1200 2:1 1200 0
minor seventh 26 1006.45 9:5 1017.60 −11.15
small just minor seventh 26 1006.45 16:9 996.09 +10.36
harmonic seventh, subminor seventh 25 967.74 Play 7:4 968.83 Play 01.09
perfect fifth 18 696.77 Play 3:2 701.96 Play 05.19
greater septimal tritone, diminished fifth 16 619.35 10:70 617.49 +01.87
lesser septimal tritone, augmented fourth 15 580.65 Play 7:5 582.51 Play 01.86
undecimal tritone, half augmented fourth, 11th harmonic 14 541.94 Play 11:80 551.32 Play 09.38
perfect fourth 13 503.23 Play 4:3 498.04 Play +05.19
septimal narrow fourth, half diminished fourth 12 464.52 Play 21:16 470.78 Play 06.26
tridecimal augmented third, and greater major third 12 464.52 Play 13:10 454.21 Play +10.31
septimal major third 11 425.81 Play 9:7 435.08 Play 09.27
diminished fourth 11 425.81 Play 32:25 427.37 Play 01.56
undecimal major third 11 425.81 Play 14:11 417.51 Play +08.30
major third 10 387.10 Play 5:4 386.31 Play +00.79
tridecimal neutral third 09 348.39 Play 16:13 359.47 Play −11.09
undecimal neutral third 09 348.39 Play 11:90 347.41 Play +00.98
minor third 08 309.68 Play 6:5 315.64 Play 05.96
septimal minor third 07 270.97 Play 7:6 266.87 Play +04.10
septimal whole tone 06 232.26 Play 8:7 231.17 Play +01.09
whole tone, major tone 05 193.55 Play 9:8 203.91 Play −10.36
whole tone, major second 05 193.55 Play 28:25 196.20 02.65
whole tone, minor tone 05 193.55 Play 10:90 182.40 Play +11.15
greater undecimal neutral second 04 154.84 Play 11:10 165.00 −10.16
lesser undecimal neutral second 04 154.84 Play 12:11 150.64 Play +04.20
septimal diatonic semitone 03 116.13 Play 15:14 119.44 Play 03.31
diatonic semitone, minor second 03 116.13 Play 16:15 111.73 Play +04.40
septimal chromatic semitone 02 077.42 Play 21:20 084.47 Play 07.05
chromatic semitone, augmented unison 02 077.42 Play 25:24 070.67 Play +06.75
lesser diesis 01 038.71 Play 128:125 041.06 Play 02.35
undecimal diesis 01 038.71 Play 45:44 038.91 Play 00.20
septimal diesis 01 038.71 Play 49:48 035.70 Play +03.01

The 31 equal temperament has a very close fit to the 7:6, 8:7, and 7:5 ratios, which have no approximate fits in 12 equal temperament and only poor fits in 19 equal temperament. The composer Joel Mandelbaum (born 1932) used this tuning system specifically because of its good matches to the 7th and 11th partials in the harmonic series.[3] The tuning has poor matches to both the 9:8 and 10:9 intervals (major and minor tone in just intonation); however, it has a good match for the average of the two. Practically it is very close to quarter-comma meantone.

This tuning can be considered a meantone temperament. It has the necessary property that a chain of its four fifths is equivalent to its major third (the syntonic comma 81:80 is tempered out), which also means that it contains a "meantone" that falls between the sizes of 10:9 and 9:8 as the combination of one of each of its chromatic and diatonic semitones.

Scale diagram

[edit]
Circle of fifths in 31 equal temperament

The following are the 31 notes in the scale:

Interval (cents) 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39
Note name A Bdouble flat A B Adouble sharp B C B C Ddouble flat C D Cdouble sharp D Edouble flat D E Ddouble sharp E F E F Gdouble flat F G Fdouble sharp G Adouble flat G A Gdouble sharp A
Note (cents)   0    39   77  116 155 194 232 271 310 348 387 426 465 503 542 581 619 658 697 735 774 813 852 890 929 968 1006 1045 1084 1123 1161 1200

The five "double flat" notes and five "double sharp" notes may be replaced by half sharps and half flats, similar to the quarter tone system:

Interval (cents) 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39
Note name A Ahalf sharp A B Bhalf flat B Bhalf sharp Chalf flat C Chalf sharp C D Dhalf flat D Dhalf sharp D E Ehalf flat E Ehalf sharp Fhalf flat F Fhalf sharp F G Ghalf flat G Ghalf sharp G A Ahalf flat A
Note (cents)   0    39   77  116 155 194 232 271 310 348 387 426 465 503 542 581 619 658 697 735 774 813 852 890 929 968 1006 1045 1084 1123 1161 1200
Key signature Number of
sharps
Key signature Number of
flats
C major C D E F G A B 0
G major G A B C D E F 1
D major D E F G A B C 2
A major A B C D E F G 3
E major E F G A B C D 4
B major B C D E F G A 5
F major F G A B C D E 6
C major C D E F G A B 7
G♯ major G A B C D E F𝄪 8
D♯ major D E F𝄪 G A B C𝄪 9
A♯ major A B C𝄪 D E F𝄪 G𝄪 10 C𝄫♭ major C𝄫♭ D𝄫♭ E𝄫♭ F𝄫♭ G𝄫♭ A𝄫♭ B𝄫♭ 21
E♯ major E F𝄪 G𝄪 A B C𝄪 D𝄪 11 G𝄫♭ major G𝄫♭ A𝄫♭ B𝄫♭ C𝄫♭ D𝄫♭ E𝄫♭ F𝄫 20
B♯ major B C𝄪 D𝄪 E F𝄪 G𝄪 A𝄪 12 D𝄫♭ major D𝄫♭ E𝄫♭ F𝄫 G𝄫♭ A𝄫♭ B𝄫♭ C𝄫 19
F𝄪 major F𝄪 G𝄪 A𝄪 B C𝄪 D𝄪 E𝄪 13 A𝄫♭ major A𝄫♭ B𝄫♭ C𝄫 D𝄫♭ E𝄫♭ F𝄫 G𝄫 18
C𝄪 major C𝄪 D𝄪 E𝄪 F𝄪 G𝄪 A𝄪 B𝄪 14 E𝄫♭ major E𝄫♭ F𝄫 G𝄫 A𝄫♭ B𝄫♭ C𝄫 D𝄫 17
G𝄪 major G𝄪 A𝄪 B𝄪 C𝄪 D𝄪 E𝄪 F♯𝄪 15 B𝄫♭ major B𝄫♭ C𝄫 D𝄫 E𝄫♭ F𝄫 G𝄫 A𝄫 16
D𝄪 major D𝄪 E𝄪 F♯𝄪 G𝄪 A𝄪 B𝄪 C♯𝄪 16 F𝄫 major F𝄫 G𝄫 A𝄫 B𝄫♭ C𝄫 D𝄫 E𝄫 15
A𝄪 major A𝄪 B𝄪 C♯𝄪 D𝄪 E𝄪 F♯𝄪 G♯𝄪 17 C𝄫 major C𝄫 D𝄫 E𝄫 F𝄫 G𝄫 A𝄫 B𝄫 14
E𝄪 major E𝄪 F♯𝄪 G♯𝄪 A𝄪 B𝄪 C♯𝄪 D♯𝄪 18 G𝄫 major G𝄫 A𝄫 B𝄫 C𝄫 D𝄫 E𝄫 F 13
B𝄪 major B𝄪 C♯𝄪 D♯𝄪 E𝄪 F♯𝄪 G♯𝄪 A♯𝄪 19 D𝄫 major D𝄫 E𝄫 F G𝄫 A𝄫 B𝄫 C 12
F♯𝄪 major F♯𝄪 G♯𝄪 A♯𝄪 B𝄪 C♯𝄪 D♯𝄪 E♯𝄪 20 A𝄫 major A𝄫 B𝄫 C D𝄫 E𝄫 F G 11
C♯𝄪 major C♯𝄪 D♯𝄪 E♯𝄪 F♯𝄪 G♯𝄪 A♯𝄪 B♯𝄪 21 E𝄫 major E𝄫 F G A𝄫 B𝄫 C D 10
B𝄫 major B𝄫 C D E𝄫 F G A 9
F♭ major F G A B𝄫 C D E 8
C♭ major C D E F G A B 7
G♭ major G A B C D E F 6
D♭ major D E F G A B C 5
A♭ major A B C D E F G 4
E♭ major E F G A B C D 3
B♭ major B C D E F G A 2
F major F G A B C D E 1
C major C D E F G A B 0
+ Comparison between 1/4-comma meantone and 31-ET (values in cents, rounded to 2 decimals)
  C C D D D E E E F F G G G A A A B B C C
1/4 comma: 0.00 76.05 117.11 193.16 269.21 310.26 386.31 462.36 503.42 579.47 620.53 696.58 772.63 813.69 889.74 965.78 1006.84 1082.89 1123.95 1200.00
31-ET: 0.00 77.42 116.13 193.55 270.97 309.68 387.10 464.52 503.23 580.65 619.35 696.77 774.19 812.90 890.32 967.74 1006.45 1083.87 1122.58 1200.00

Chords of 31 equal temperament

[edit]

Many chords of 31-ET are discussed in the article on septimal meantone temperament. Chords not discussed there include the neutral thirds triad (Play), which might be written C–Ehalf flat–G, C–Ddouble sharp–G or C–Fdouble flat–G, and the Orwell tetrad, which is C–E–Fdouble sharp–Bdouble flat.

I–IV–V–I chord progression in 31 tone equal temperament.[1]Whereas in 12TET B is 11 steps, in 31-TET B is 28 steps.
C subminor, C minor, C major, C supermajor (topped by A) in 31 equal temperament

Usual chords like the major chord are rendered nicely in 31-ET because the third and the fifth are very well approximated. Also, it is possible to play subminor chords (where the first third is subminor) and supermajor chords (where the first third is supermajor).

C seventh and G minor, twice in 31 equal temperament, then twice in 12 equal temperament

It is also possible to render nicely the harmonic seventh chord. For example on C with C–E–G–A. The seventh here is different from stacking a fifth and a minor third, which instead yields B to make a dominant seventh. This difference cannot be made in 12-ET.

See also

[edit]

References

[edit]
  • ^ Monzo, Joe (2005). "Equal-Temperament". Tonalsoft Encyclopedia of Microtonal Music Theory. Joe Monzo. Retrieved 28 February 2019.
  • ^ Keislar, Douglas. "Six American Composers on Nonstandard Tunnings: Easley Blackwood; John Eaton; Lou Harrison; Ben Johnston; Joel Mandelbaum; William Schottstaedt", Perspectives of New Music, vol. 29, no. 1. (Winter 1991), pp. 176–211. JSTOR 833076
  • [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=31_equal_temperament&oldid=1236328506"

    Categories: 
    Equal temperaments
    Microtonality
    Hidden categories: 
    Pages using the Phonos extension
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from July 2024
    All articles needing additional references
     



    This page was last edited on 24 July 2024, at 03:15 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki