Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Structure and properties  





2 Preparation  





3 Reactions  





4 Uses  



4.1  Metal extractant  





4.2  Other applications  







5 See also  





6 References  














Oxime






العربية
Català
Čeština
Deutsch
Ελληνικά
Español
فارسی
Français
Galego
ि
Bahasa Indonesia
Italiano
עברית
Кыргызча
Македонски
Nederlands

Polski
Português
Română
Русский
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Svenska
Українська


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inorganic chemistry, an oxime is an organic compound belonging to the imines, with the general formula RR’C=N−OH, where R is an organic side-chain and R' may be hydrogen, forming an aldoxime, or another organic group, forming a ketoxime. O-substituted oximes form a closely related family of compounds. Amidoximes are oximes of amides (R1C(=O)NR2R3) with general structure R1C(=NOH)NR2R3.

Oximes are usually generated by the reaction of hydroxylamine with aldehydes (R−CH=O) or ketones (RR’C=O). The term oxime dates back to the 19th century, a combination of the words oxygen and imine.[1]

Structure and properties[edit]

If the two side-chains on the central carbon are different from each other—either an aldoxime, or a ketoxime with two different "R" groups—the oxime can often have two different geometric stereoisomeric forms according to the E/Z configuration. An older terminology of syn and anti was used to identify especially aldoximes according to whether the R group was closer or further from the hydroxyl. Both forms are often stable enough to be separated from each other by standard techniques.

Oximes have three characteristic bands in the infrared spectrum, whose wavelengths corresponding to the stretching vibrations of its three types of bonds: 3600 cm−1 (O−H), 1665 cm−1 (C=N) and 945 cm−1 (N−O).[2]

In aqueous solution, aliphatic oximes are 102- to 103-fold more resistant to hydrolysis than analogous hydrazones.[3]

Preparation[edit]

Oximes can be synthesized by condensation of an aldehyde or a ketone with hydroxylamine. The condensation of aldehydes with hydroxylamine gives aldoximes, and ketoximes are produced from ketones and hydroxylamine. In general, oximes exist as colorless crystals or as thick liquids and are poorly soluble in water. Therefore, oxime formation can be used for the identification of ketone or aldehyde functional groups.

Oximes can also be obtained from reaction of nitrites such as isoamyl nitrite with compounds containing an acidic hydrogen atom. Examples are the reaction of ethyl acetoacetate and sodium nitriteinacetic acid,[4][5] the reaction of methyl ethyl ketone with ethyl nitriteinhydrochloric acid.[6] and a similar reaction with propiophenone,[7] the reaction of phenacyl chloride,[8] the reaction of malononitrile with sodium nitrite in acetic acid[9]

A conceptually related reaction is the Japp–Klingemann reaction.

Reactions[edit]

The hydrolysis of oximes proceeds easily by heating in the presence of various inorganic acids, and the oximes decompose into the corresponding ketones or aldehydes, and hydroxylamines. The reduction of oximes by sodium metal,[10] sodium amalgam, hydrogenation, or reaction with hydride reagents produces amines.[11] Typically the reduction of aldoximes gives both primary amines and secondary amines; however, reaction conditions can be altered (such as the addition of potassium hydroxide in a 1/30 molar ratio) to yield solely primary amines.[12]

In general, oximes can be changed to the corresponding amide derivatives by treatment with various acids. This reaction is called Beckmann rearrangement.[13] In this reaction, a hydroxyl group is exchanged with the group that is in the anti position of the hydroxyl group. The amide derivatives that are obtained by Beckmann rearrangement can be transformed into a carboxylic acid by means of hydrolysis (base or acid catalyzed). And an amine by Hoffman degradation of the amide in the presence of alkali hypoclorites. Beckmann rearrangement is used for the industrial synthesis of caprolactam (see applications below).

The Ponzio reaction (1906)[14] concerning the conversion of m-nitrobenzaldoxime to m-nitrophenyldinitromethane using dinitrogen tetroxide was the result of research into TNT analogues:[15]

Ponzio reaction

In the Neber rearrangement certain oximes are converted to the corresponding alpha-amino ketones.

Oximes can be dehydrated using acid anhydrides to yield corresponding nitriles.

Certain amidoximes react with benzenesulfonyl chloride to make substituted ureas in the Tiemann rearrangement:[16][17]

Tiemann rearragement

Uses[edit]

In their largest application, an oxime is an intermediate in the industrial production of caprolactam, a precursor to Nylon 6. About half of the world's supply of cyclohexanone, more than a million tonnes annually, is converted to the oxime. In the presence of sulfuric acid catalyst, the oxime undergoes the Beckmann rearrangement to give the cyclic amide caprolactam:[18]

Metal extractant[edit]

Structure of Nickel bis(dimethylglyoximate).

Oximes are commonly used as ligands and sequestering agents for metal ions. Dimethylglyoxime (dmgH2) is a reagent for the analysis of nickel and a popular ligand in its own right. In the typical reaction, a metal reacts with two equivalents of dmgH2 concomitant with ionization of one proton. Salicylaldoxime is a chelatorinhydrometallurgy.[19]

Amidoximes such as polyacrylamidoxime can be used to capture trace amounts of uranium from sea water.[20][21] In 2017 researchers announced a configuration that absorbed up to nine times as much uranyl as previous fibers without saturating.[22]

Other applications[edit]

See also[edit]

References[edit]

  1. ^ The name "oxime" is derived from "oximide" (i.e., oxy- + amide). According to the German organic chemist Victor Meyer (1848–1897) – who, with Alois Janny, synthesized the first oximes – an "oximide" was an organic compound containing the group (=N−OH) attached to a carbon atom. The existence of oximides was questioned at the time (ca. 1882). (See page 1164 of: Victor Meyer und Alois Janny (1882a) "Ueber stickstoffhaltige Acetonderivate" (On nitrogenous derivatives of acetone), Berichte der Deutschen chemischen Gesellschaft, 15: 1164–1167.) However, in 1882, Meyer and Janny succeeded in synthesizing methylglyoxime (CH3C(=NOH)CH(=NOH)), which they named "Acetoximsäure" (acetoximic acid) (Meyer & Janny, 1882a, p. 1166). Subsequently, they synthesized 2-propanone, oxime ((CH3)2C=NOH), which they named "Acetoxim" (acetoxime), in analogy with Acetoximsäure. From Victor Meyer and Alois Janny (1882b) "Ueber die Einwirkung von Hydroxylamin auf Aceton" (On the effect of hydroxylamine on acetone), Berichte der Deutschen chemischen Gesellschaft, 15: 1324–1326, page 1324: "Die Substanz, welche wir, wegen ihrer nahen Beziehungen zur Acetoximsäure, und da sie keine sauren Eigenschaften besitzt, vorläufig Acetoxim nennen wollen, …" (The substance, which we – on account of its close relations to acetoximic acid, and since it possesses no acid properties – will, for the present, name "acetoxime," … )
  • ^ Reusch, W. "Infrared Spectroscopy". Virtual Textbook of Organic Chemistry. Michigan State University. Archived from the original on 21 June 2010. Retrieved 6 July 2009.
  • ^ Kalia, J.; Raines, R. T. (2008). "Hydrolytic stability of hydrazones and oximes". Angew. Chem. Int. Ed. 47 (39): 7523–7526. doi:10.1002/anie.200802651. PMC 2743602. PMID 18712739.
  • ^ Fischer, Hans (1943). "2,4-Dimethyl-3,5-dicarbethoxypyrrole". Organic Syntheses; Collected Volumes, vol. 2, p. 202.
  • ^ Fischer, Hans (1955). "Kryptopyrrole". Organic Syntheses; Collected Volumes, vol. 3, p. 513.
  • ^ Semon, W. L. & Damerell, V. R. (1943). "Dimethoxyglyoxime". Organic Syntheses; Collected Volumes, vol. 2, p. 204.
  • ^ Hartung, Walter H. & Crossley, Frank (1943). "Isonitrosopropiophenone". Organic Syntheses; Collected Volumes, vol. 2, p. 363.
  • ^ Levin, Nathan & Hartung, Walter H. (1955). "ω-chloroisonitrosoacetophenone". Organic Syntheses; Collected Volumes, vol. 3, p. 191.
  • ^ Ferris, J. P.; Sanchez, R. A. & Mancuso, R. W. (1973). "p-toluenesulfonate". Organic Syntheses; Collected Volumes, vol. 5, p. 32.
  • ^ Suter, C. M.; Moffett, Eugene W. (1934). "The Reduction of Aliphatic Cyanides and Oximes with Sodium and n-Butyl Alcohol". Journal of the American Chemical Society. 56 (2): 487. doi:10.1021/ja01317a502.
  • ^ George, Frederick; Saunders, Bernard (1960). Practical Organic Chemistry (4th ed.). London: Longman. p. 93 & 226. ISBN 9780582444072.
  • ^ Hata, Kazuo (1972). New Hydrogenating Catalysts. New York: John Wiley & Sons Inc. p. 193. ISBN 9780470358900.
  • ^ Clayden, Jonathan; Greeves, Nick; Warren, Stuart (2012). Organic chemistry (2nd ed.). Oxford University Press. p. 958. ISBN 978-0-19-927029-3.
  • ^ Ponzio, Giacomo (1906). "Einwirkung von Stickstofftetroxyd auf Benzaldoxim". J. Prakt. Chem. 73: 494–496. doi:10.1002/prac.19060730133.
  • ^ Fieser, Louis F. & Doering, William von E. (1946). "Aromatic-Aliphatic Nitro Compounds. III. The Ponzio Reaction; 2,4,6-Trinitrobenzyl Nitrate". J. Am. Chem. Soc. 68 (11): 2252–2253. doi:10.1021/ja01215a040.
  • ^ Tiemann, Ferdinand (1891). "Ueber die Einwirkung von Benzolsulfonsäurechlorid auf Amidoxime". Chemische Berichte. 24 (2): 4162–4167. doi:10.1002/cber.189102402316.
  • ^ Plapinger, Robert; Owens, Omer (1956). "Notes – The Reaction of Phosphorus-Containing Enzyme Inhibitors with Some Hydroxylamine Derivatives". J. Org. Chem. 21 (10): 1186. doi:10.1021/jo01116a610.
  • ^ Ritz, Josef; Fuchs, Hugo; Kieczka, Heinz; Moran, William C. "Caprolactam". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a05_031.pub2. ISBN 978-3527306732.
  • ^ Smith, Andrew G.; Tasker, Peter A.; White, David J. (2003). "The structures of phenolic oximes and their complexes". Coordination Chemistry Reviews. 241 (1–2): 61–85. doi:10.1016/S0010-8545(02)00310-7.
  • ^ Rao, Linfeng (15 March 2010). Recent International R&D Activities in the Extraction of Uranium from Seawater (Report). Lawrence Berkeley National Laboratory.
  • ^ Kanno, M (1984). "Present status of study on extraction of uranium from sea water". Journal of Nuclear Science and Technology. 21 (1): 1–9. Bibcode:1984JNST...21....1K. doi:10.1080/18811248.1984.9731004.
  • ^ Dent, Steve (17 February 2017). "Endless nuclear power can be found in the seas". Engadget. Retrieved 22 February 2017.
  • ^ Rowe, Aaron (27 November 2007). "New Nerve Gas Antidotes". Wired.
  • ^ Kassa, J. (2002). "Review of oximes in the antidotal treatment of poisoning by organophosphorus nerve agents". Journal of Toxicology: Clinical Toxicology. 40 (6): 803–16. doi:10.1081/CLT-120015840. PMID 12475193. S2CID 20536869.
  • ^ Johannes Panten and Horst Surburg "Flavors and Fragrances, 2. Aliphatic Compounds" in Ullmann's Encyclopedia of Industrial Chemistry, 2015, Wiley-VCH, Weinheim.doi:10.1002/14356007.t11_t01
  • Nervous
    system

    Alcohol intoxication

  • Thiamine
  • Barbiturate
    overdose

  • Ethamivan
  • Benzodiazepine
    overdose

  • Flumazenil
  • GHB overdose

  • SCH-50911
  • Nerve agent /
    Organophosphate
    poisoning

  • Biperiden
  • Diazepam#
  • Oximes
  • see also: Cholinesterase
  • Opioid overdose

  • Doxapram
  • Nalmefene
  • Nalorphine
  • Naloxone#
  • Naltrexone
  • Reversal of
    neuromuscular blockade

    Circulatory
    system

    Beta blocker

    Digoxin toxicity

    Anticoagulants

  • against heparin (Protamine#)
  • Other

    Arsenic poisoning

  • Succimer
  • Cyanide poisoning

  • Hydroxocobalamin
  • nitrite
  • Sodium thiosulfate#
  • Hydrofluoric acid

    Methanol /
    Ethylene glycol
    poisoning

  • Fomepizole
  • Paracetamol toxicity
    (Acetaminophen)

  • Glutathione
  • Methionine#
  • Toxic metals (cadmium

  • mercury
  • thallium)
  • Dimercaprol#
  • Edetates
  • Prussian blue#
  • Other

  • Methylthioninium chloride#
  • oxidizing agent
  • Prednisolone/promethazine
  • Emetic

  • Ipecacuanha
  • Withdrawn from market
  • Clinical trials:
  • §Never to phase III
  • Hydrocarbons
    (only C and H)

  • Ethyl
  • Propyl
  • Cyclopropyl
  • Butyl
  • Pentyl
  • Methylene
  • Alkene
  • Aryl
  • Alkyne
  • Carbene
  • Only carbon,
    hydrogen,
    and oxygen
    (only C, H and O)

    R-O-R

  • Alcohol
  • Alkoxy
  • Ether
  • Peroxy
  • Ethylenedioxy
  • Methylenedioxy
  • carbonyl

  • Acryloyl
  • Benzoyl
  • Aldehyde
  • Ketone
  • Ynone
  • carboxy

  • Anhydride
  • Ester
  • Only one
    element,
    not being
    carbon,
    hydrogen,
    or oxygen
    (one element,
    not C, H or O)

    Nitrogen

  • Ammonium
  • Hydrazo
  • Nitrene
  • Imine
  • Oxime
  • Hydrazone
  • Azo
  • Amide
  • Imidate
  • Amidine
  • Carbamate
  • Imide
  • Nitrile
  • Isonitrile
  • Cyanate
  • Isocyanate
  • Nitrate
  • Nitrite
  • Nitro
  • Nitroso
  • NONOate
  • Phosphorus

  • Phosphonate
  • Phosphonous
  • Phosphinate
  • Phosphine oxide
  • Phosphine
  • Phosphaalkene
  • Phosphaalkyne
  • Phosphaallene
  • Sulfur

  • Sulfide
  • Persulfide
  • Disulfide
  • Sulfenic acid
  • Thiosulfinate
  • Sulfoxide
  • Thiosulfonate
  • Sulfinic acid
  • Sulfone
  • Sulfonic acid
  • Thioketone
  • Thial
  • Thioester
  • Thionoester
  • Thioxanthate
  • Xanthate
  • Boron

  • Borinic acid
  • Selenium

  • Selenonic acid
  • Seleninic acid
  • Selenenic acid
  • Selone
  • Tellurium

  • Telluroketone
  • Halo

  • Trifluoromethyl
  • Trichloromethyl
  • Trifluoromethoxy
  • Hypervalent iodine
  • Vinyl halide
  • Acyl halide
  • Perchlorate
  • Other

  • Phosphoramides
  • Sulfenyl chloride
  • Sulfonamide
  • Thiocyanate
  • Sulfinylamines
  • See also
    chemical classification
    chemical nomenclature
    inorganic
    organic


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Oxime&oldid=1232864420"

    Categories: 
    Functional groups
    Organic compounds
    Oximes
    Chelating agents
    Hidden categories: 
    Articles containing German-language text
    Articles with short description
    Short description is different from Wikidata
    Use dmy dates from February 2023
    Articles with GND identifiers
    Articles with J9U identifiers
     



    This page was last edited on 6 July 2024, at 00:59 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki