Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  



























Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1Meaning
 


1.1Plan
 




1.2Do
 




1.3Check
 




1.4Act
 






2About
 




3See also
 




4References
 




5Further reading
 













PDCA






العربية

Català
Čeština
Deutsch
Eesti
Español
Euskara
فارسی
Français

Հայերեն
ि
Bahasa Indonesia
Italiano
Magyar
Nederlands

Norsk bokmål
Polski
Português
Română
Русский
کوردی
Suomi
Svenska

Türkçe
Українська
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 


















From Wikipedia, the free encyclopedia
 


Plan-do-check-act circle

PDCAorplan–do–check–act (sometimes called plan–do–check–adjust) is an iterative design and management method used in business for the control and continual improvement of processes and products.[1] It is also known as the Shewhart cycle, or the control circle/cycle. Another version of this PDCA cycle is OPDCA.[2] The added "O" stands for observation or as some versions say: "Observe the current condition." This emphasis on observation and current condition has currency with the literature on lean manufacturing and the Toyota Production System.[3] The PDCA cycle, with Ishikawa's changes, can be traced back to S. Mizuno of the Tokyo Institute of Technology in 1959.[4]

The PDCA cycle is also known as PDSA cycle (where S stands for study). It was an early means of representing the task areas of traditional quality management. The cycle is sometimes referred to as the Shewhart / Deming cycle since it originated with physicist Walter Shewhart at the Bell Telephone Laboratories in the 1920s. W. Edwards Deming modified the Shewhart cycle in the 1940s and subsequently applied it to management practices in Japan in the 1950s.[5]

Deming found that the focus on Check is more about the implementation of a change, with success or failure. His focus was on predicting the results of an improvement effort, studying the actual results, and comparing them to possibly revise the theory.

Meaning[edit]

Continuous quality improvement with plan–do–check–act

Plan[edit]

Establish objectives and processes required to deliver the desired results.

Do[edit]

Carry out the objectives from the previous step.

Check[edit]

During the check phase, the data and results gathered from the do phase are evaluated. Data is compared to the expected outcomes to see any similarities and differences. The testing process is also evaluated to see if there were any changes from the original test created during the planning phase. If the data is placed in a chart it can make it easier to see any trends if the plan–do–check–act cycle is conducted multiple times. This helps to see what changes work better than others and if said changes can be improved as well.

Example: Gap analysisorappraisals

Act[edit]

Also called "adjust", this act phase is where a process is improved. Records from the "do" and "check" phases help identify issues with the process. These issues may include problems, non-conformities, opportunities for improvement, inefficiencies, and other issues that result in outcomes that are evidently less-than-optimal. Root causes of such issues are investigated, found, and eliminated by modifying the process. Risk is re-evaluated. At the end of the actions in this phase, the process has better instructions, standards, or goals. Planning for the next cycle can proceed with a better baseline. Work in the next do phase should not create a recurrence of the identified issues; if it does, then the action was not effective.

About[edit]

Plan–do–check–act is associated with W. Edwards Deming, who is considered by many to be the father of modern quality control; however, he used PDSA (Plan-Do-Study-Act) and referred to it as the "Shewhart cycle".[6] Later in Deming's career, he modified PDCA to "Plan, Do, Study, Act" (PDSA) because he felt that "check" emphasized inspection over analysis.[7] The PDSA cycle was used to create the model of know-how transfer process,[8] and other models.[9]

The concept of PDCA is based on the scientific method, as developed from the work of Francis Bacon (Novum Organum, 1620). The scientific method can be written as『hypothesis–experiment–evaluation』or as "plan–do–check". Walter A. Shewhart described manufacture under "control"—under statistical control—as a three-step process of specification, production, and inspection.[10]: 45  He also specifically related this to the scientific method of hypothesis, experiment, and evaluation. Shewhart says that the statistician "must help to change the demand [for goods] by showing [...] how to close up the tolerance range and to improve the quality of goods."[10]: 48  Clearly, Shewhart intended the analyst to take action based on the conclusions of the evaluation. According to Deming, during his lectures in Japan in the early 1920s, the Japanese participants shortened the steps to the now traditional plan, do, check, act.[4] Deming preferred plan, do, study, act because "study" has connotations in English closer to Shewhart's intent than "check".[11]

Multiple iterations of the plan-do-check-act cycle are repeated until the problem is solved.

A fundamental principle of the scientific method and plan–do–check–act is iteration—once a hypothesis is confirmed (or negated), executing the cycle again will extend the knowledge further. Repeating the PDCA cycle can bring its users closer to the goal, usually a perfect operation and output.[11]

Plan–do–check–act (and other forms of scientific problem solving) is also known as a system for developing critical thinking. At Toyota this is also known as "Building people before building cars".[12] Toyota and other lean manufacturing companies propose that an engaged, problem-solving workforce using PDCA in a culture of critical thinking is better able to innovate and stay ahead of the competition through rigorous problem solving and the subsequent innovations.[12]

Deming continually emphasized iterating towards an improved system, hence PDCA should be implemented in spirals of increasing knowledge of the system that converge on the ultimate goal, each cycle closer than the previous.[13] One can envision an open coil spring, with each loop being one cycle of the scientific method, and each complete cycle indicating an increase in our knowledge of the system under study. This approach is based on the belief that our knowledge and skills are limited, but improving. Especially at the start of a project, key information may not be known; the PDCA—scientific method—provides feedback to justify guesses (hypotheses) and increase knowledge. Rather than enter "analysis paralysis" to get it perfect the first time, it is better to be approximately right than exactly wrong. With improved knowledge, one may choose to refine or alter the goal (ideal state). The aim of the PDCA cycle is to bring its users closer to whatever goal they choose.[3]: 160 

When PDCA is used for complex projects or products with a certain controversy, checking with external stakeholders should happen before the Do stage, since changes to projects and products that are already in detailed design can be costly; this is also seen as Plan-Check-Do-Act.[citation needed]

The rate of change, that is, the rate of improvement, is a key competitive factor in today's world.[citation needed] PDCA allows for major "jumps" in performance ("breakthroughs" often desired in a Western approach), as well as kaizen (frequent small improvements).[14] In the United States a PDCA approach is usually associated with a sizable project involving numerous people's time,[citation needed] and thus managers want to see large "breakthrough" improvements to justify the effort expended. However, the scientific method and PDCA apply to all sorts of projects and improvement activities.[3]: 76 

See also[edit]

  • COBIT, a business-focused framework for IT management and governance
  • Decision cycle, sequence of steps used on a repeated basis
  • DMAIC (define, measure, analyze, improve and control), an improvement cycle originally from Six Sigma process improvement system
  • Intelligence cycle, model of military and law enforcement intelligence processing
  • Kolb's experiential learning
  • Lean manufacturing
  • Learning cycle
  • Lesson study, a teaching improvement process
  • Monitoring and evaluation
  • OODA loop (observe–orient–decide–act loop), feedback loop used at operational level in combat operations
  • Performance management
  • Quality storyboard
  • Robert S. Kaplan (closed loop management system)
  • Six Sigma
  • Software development process
  • Theory of constraints
  • Total security management
  • References[edit]

    1. ^ Tague, Nancy R. (2005) [1995]. "Plan–Do–Study–Act cycle". The quality toolbox (2nd ed.). Milwaukee: ASQ Quality Press. pp. 390–392. ISBN 978-0873896399. OCLC 57251077.
  • ^ Foresight University, The Foresight Guide, Shewhart's Learning and Deming's Quality Cycle, [1]
  • ^ a b c Rother, Mike (2010). Toyota kata: managing people for improvement, adaptiveness, and superior results. New York: McGraw-Hill. ISBN 978-0071635233. OCLC 318409119.
  • ^ a b Deming, W. Edwards (1986). Out of the crisis. Cambridge, MA: Massachusetts Institute of Technology, Center for Advanced Engineering Study. p. 88. ISBN 978-0911379013. OCLC 13126265.
  • ^ "18.2.1 The Deming Cycle (PDCA Cycle) and the Shewhart Cycle". Retrieved 2023-04-17.
  • ^ Pruitt, W. Frazier; Imam, S.M. Waqas. "Expert Answers: April 2021 | ASQ". asq.org. 54 (4): 6.
  • ^ Aguayo, Rafael (1990). Dr. Deming: the American who taught the Japanese about quality. A Lyle Stuart book. Secaucus, NJ: Carol Pub. Group. p. 76. ISBN 978-0818405198. OCLC 22347078. Also published by Simon & Schuster, 1991.
  • ^ Dubickis, Mikus; Gaile-Sarkane, Elīna (December 2017). "Transfer of know-how based on learning outcomes for development of open innovation". Journal of Open Innovation: Technology, Market, and Complexity. 3 (1): 4. doi:10.1186/s40852-017-0053-4. hdl:10419/176539.
  • ^ Dubberly, Hugh (2008) [2004]. "How do you design?: a compendium of models". dubberly.com. Retrieved 2017-10-21.
  • ^ a b Shewhart, Walter Andrew (1986) [1939]. Statistical method from the viewpoint of quality control. New York: Dover. ISBN 978-0486652320. OCLC 13822053. Reprint. Originally published: Washington, DC: Graduate School of the Department of Agriculture, 1939.
  • ^ a b Moen, Ronald; Norman, Clifford. "Evolution of the PDCA cycle" (PDF). westga.edu. Paper delivered to the Asian Network for Quality Conference in Tokyo on September 17, 2009. Retrieved 1 October 2011.
  • ^ a b Liker, Jeffrey K. (2004). The Toyota way: 14 management principles from the world's greatest manufacturer. New York: McGraw-Hill. ISBN 978-0071392310. OCLC 54005437.
  • ^ "PDSA Cycle - The W. Edwards Deming Institute". deming.org/. Retrieved 2023-11-30.
  • ^ https://www.agilealliance.org/wp-content/uploads/2016/01/PDCA.pdf
  • Further reading[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=PDCA&oldid=1225475233"

    Categories: 
    American inventions
    Quality management
    Project management techniques
    Systems analysis
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from October 2017
    Commons category link is on Wikidata
     



    This page was last edited on 24 May 2024, at 17:25 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki