Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Functional form  





2 Potential range  





3 Computational cost  





4 Infinitely periodic systems  





5 Beyond pair potentials  





6 Common pair potentials  





7 References  














Pair potential






العربية

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inphysics, a pair potential is a function that describes the potential energy of two interacting objects solely as a function of the distance between them.[1]

Some interactions, like Coulomb's lawinelectrodynamicsorNewton's law of universal gravitationinmechanics naturally have this form for simple spherical objects. For other types of more complex interactions or objects it is useful and common to approximate the interaction by a pair potential, for example interatomic potentials in physics and computational chemistry that use approximations like the Lennard-Jones and Morse potentials.


Functional form[edit]

The total energy of a system of objects at positions , that interact through pair potential is given by

Equivalently, this can be expressed as

This expression uses the fact that interaction is symmetric between particles and . It also avoids self-interaction by not including the case where .

Potential range[edit]

A fundamental property of a pair potential is its range. It is expected that pair potentials go to zero for infinite distance as particles that are too far apart do not interact. In some cases the potential goes quickly to zero and the interaction for particles that are beyond a certain distance can be assumed to be zero, these are said to be short-range potentials. Other potentials, like the Coulomb or gravitational potential, are long range: they go slowly to zero and the contribution of particles at long distances still contributes to the total energy.

Computational cost[edit]

The total energy expression for pair potentials is quite simple to use for analytical and computational work. It has some limitations however, as the computational cost is proportional to the square of number of particles. This might be prohibitively expensive when the interaction between large groups of objects needs to be calculated.

For short-range potentials the sum can be restricted only to include particles that are close, reducing the cost to linearly proportional to the number of particles.

Infinitely periodic systems[edit]

In some cases it is necessary to calculate the interaction between an infinite number of particles arranged in a periodic pattern.

Beyond pair potentials[edit]

Pair potentials are very common in physics and computational chemistry and biology; exceptions are very rare. An example of a potential energy function that is not a pair potential is the three-body Axilrod-Teller potential. Another example is the Stillinger-Weber potential for silicon, which includes the angle in a triangle of silicon atoms as an input parameter.[2][3]

Common pair potentials[edit]

Some commonly used pair potentials are listed below.

References[edit]

  1. ^ Pei, Jun; Song, Lin Frank; Merz Jr., Kenneth M. (June 19, 2020). "Pair Potentials as Machine Learning Features". J. Chem. Theory Comput. 16 (8): 5385–5400. doi:10.1021/acs.jctc.9b01246. PMID 32559380. S2CID 219947826. Retrieved 26 July 2022.
  • ^ Stillinger, Frank H.; Weber, Thomas A. (15 April 1985). "Computer simulation of local order in condensed phases of silicon". Physical Review B. 31 (8): 5262–5271. Bibcode:1985PhRvB..31.5262S. doi:10.1103/PhysRevB.31.5262. PMID 9936488. Retrieved 26 July 2022.
  • ^ Stillinger, Frank H.; Weber, Thomas A. (15 January 1986). "Erratum: Computer simulation of local order in condensed phases of silicon [Phys. Rev. B 31, 5262 (1985)]". Physical Review B. 33 (2): 1451. Bibcode:1986PhRvB..33.1451S. doi:10.1103/PhysRevB.33.1451. PMID 9938428.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Pair_potential&oldid=1202292637"

    Categories: 
    Mechanics
    Electricity
    Computational chemistry
    Intermolecular forces
    Quantum mechanical potentials
    Theoretical chemistry
    Hidden categories: 
    Articles with short description
    Short description with empty Wikidata description
     



    This page was last edited on 2 February 2024, at 12:15 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki