Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Problems of recognition  





2 Classification  





3 Records of the various soil groups  





4 References  














Paleopedological record







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The paleopedological record is, essentially, the fossil recordofsoils. The paleopedological record consists chiefly of paleosols buried by flood sediments, or preserved at geological unconformities, especially plateau escarpments or sides of river valleys. Other fossil soils occur in areas where volcanic activity has covered the ancient soils.

Problems of recognition

[edit]

After burial, soil fossils tend to be altered by various chemical and physical processes. These include:

The keys to recognising fossils of various soils include:

Classification

[edit]

Soil fossils are usually classified by USDA soil taxonomy. With the exception of some exceedingly old soils which have a clayey, grey-green horizon that is quite unlike any present soil and clearly formed in the absence of O2, most fossil soils can be classified into one of the twelve orders recognised by this system. This is usually done by means of X-ray diffraction, which allows the various particles within the former soils to be analysed so that it can be seen to which order the soils correspond.

Other methods for classifying soil fossils rely on geochemical analysis of the soil material, which allows the minerals in the soil to be identified. This is only useful where large amounts of the ancient soil are available, which is rarely the case.

Records of the various soil groups

[edit]

During the Precambrian, when life on land was precluded by a very thin or nonexistent ozone layer, soils were subject to much more rapid erosion and most fossils from this period are of undeveloped entisolsorinceptisols. Vertisols and aridisols have a continuous fossil record from Paleoproterozoic continents onwards (though little is known about when they were first vegetated), whilst a few andisol fossils are known from the Mesoproterozoic and more abundantly from the Ordovician just before land vegetation began to emerge. Other major andisol fossils can be found in the middle JurassicofSiberia.

Oxisols, deeply weathered tropical soils, have a rich fossil record from the Paleoproterozoic onwards. Outside of ice ages, oxisols have generally been the dominant soil order in the paleopedological record. This is because soil formation, after which oxisols take more weathering to form than any other soil order, has been almost non-existent outside eras of extensive continental glaciation. This is not only because of the soils formed by glaciation itself, but also because mountain building, which is the other critical factor in producing new soil, has always coincided with a reduction in global temperatures and sea levels. This is because the sediment formed from the eroding mountains reduces the atmospheric CO2 content and also causes changes in circulation linked closely by climatologists to the development of continental ice sheets. Oxisols were not vegetated until the late Carboniferous, probably because microbial evolution was not before that point advanced enough to permit plants to obtain sufficient nutrients from soils with very low concentrations of nitrogen, phosphorus, calcium and potassium.

Owing to their extreme climatic requirements, gelisol fossils are confined to the few periods of extensive continental glaciation - the earliest being 900 million years ago in the Neoproterozoic. However, in these periods fossil gelisols are generally abundant, notable finds coming from the CarboniferousinNew South Wales.

The earliest land vegetation is found in Early Silurian entisols and inceptisols, and with the growth of land vegetation under a protective ozone layer several new soil orders emerged. The first, histosols, emerged in the Devonian but are rare as fossils because most of their mass consists of organic materials that tend to decay quickly. Alfisols and ultisols emerged in the late Devonian and early Carboniferous, and have a continuous, though not rich, fossil record in eras since then. Spodosols are known only from the Carboniferous and from a few periods since that time - though less acidic soils otherwise similar to spodosols are known from the Mesozoic and Tertiary and may constitute an extinct suborder.

During the Mesozoic the paleopedological record tends to be poor, probably because the absence of mountain-building and glaciation meant that most surface soils were very old and were constantly being weathered of what weatherable materials remained. Oxisols and orthents are the dominant groups, though a few more fertile soils have been found, such as the extensive andisols mentioned earlier from Jurassic Siberia. Evidence for widespread deeply weathered soils in the Paleocene can be seen in abundant oxisols and ultisols in now-heavily glaciated Scotland and Antarctica. Mollisols, the major agricultural soils of the present, are unique in their geological youth, being known from the Eocene but common only from the Miocene, as grasslands evolved. The most abundant paleopedological record is that of the Quaternary with few soils different from types widely found today.

An important difference between the paleopedological record and the fossil record of plants and animals is that very few of the soils found are extinct types. Despite the difficulties of identification mentioned earlier, this makes paleopedology (the study of fossil soils) potentially very useful to understanding the ecological relationships in past ecosystems.

References

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Paleopedological_record&oldid=1163706914"

Categories: 
Paleontology
Pedology
Hidden categories: 
Articles needing additional references from June 2013
All articles needing additional references
Articles lacking in-text citations from June 2013
All articles lacking in-text citations
 



This page was last edited on 6 July 2023, at 05:37 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki