Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Structure  





2 History and discovery  





3 Reaction in purple bacteria  





4 Involvement in photosystem II  





5 See also  





6 References  





7 References  














Pheophytin






Català
Dansk
Deutsch
Eesti
Français
Galego


Polski
Русский
Svenska

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Pheophytin a, i.e. chlorophyll a without the Mg2+ ion.

Structure

[edit]

In biochemical terms, pheophytin is a chlorophyll molecule lacking a central Mg2+ ion. It can be produced from chlorophyll by treatment with a weak acid, producing a dark bluish waxy pigment.[1] The probable etymology comes from this description, with pheo meaning dusky[2] and phyt meaning vegetation.[3]

History and discovery

[edit]

In 1977, scientists Klevanik, Klimov, Shuvalov performed a series of experiments to demonstrate that it is pheophytin and not plastoquinone that serves as the primary electron acceptor in photosystem II. Using several experiments, including electron paramagnetic resonance (EPR), they were able to show that pheophytin was reducible and, therefore, the primary electron acceptor between P680 and plastoquinone (Klimov, Allakhverdiev, Klevanik, Shuvalov). This discovery was met with fierce opposition, since many believed pheophytin to only be a byproduct of chlorophyll degradation. Therefore, more experiments ensued to prove that pheophytin is indeed the primary electron acceptor of PSII, occurring between P680 and plastoquinone (Klimov, Allakhverdiev, Shuvalov). The data that was obtained is as follows:

  1. Photo-reduction of pheophytin has been observed in various mixtures containing PSII reaction centers.
  2. The quantity of pheophytin is in direct proportion to the number of PSII reaction centers.
  3. Photo-reduction of pheophytin occurs at temperatures as low as 100K, and is observed after the reduction of plastoquinone.[clarification needed]

These observations are all characteristic of photo-conversions of reaction center components.

Reaction in purple bacteria

[edit]

Pheophytin is the first electron carrier intermediate in the photoreaction center (RC P870) of purple bacteria. Its involvement in this system can be broken down into 5 basic steps. The first step is excitation of the bacteriochlorophylls (Chl)2 or the special pair of chlorophylls. This can be seen in the following reaction.

The second step involves the (Chl)2 passing an electron to pheophytin, producing a negatively charged radical (the pheophytin) and a positively charged radical (the special pair of chlorophylls), which results in a charge separation.

The third step is the rapid electron movement to the tightly bound menaquinone, QA, which immediately donates the electrons to a second, loosely bound quinone (QB). Two electron transfers convert QB to its reduced form (QBH2).

The fifth and final step involves the filling of the “hole” in the special pair by an electron from a heme in cytochrome c. This regenerates the substrates and completes the cycle, allowing for subsequent reactions to take place.

Involvement in photosystem II

[edit]

In photosystem II, pheophytin plays a very similar role. It again acts as the first electron carrier intermediate in the photosystem. After P680 becomes excited to P680*, it transfers an electron to pheophytin, which converts the molecule into a negatively charged radical. Two negatively charged pheophytin radicals quickly pass their extra electrons to two consecutive plastoquinone molecules. Eventually, the electrons pass through the cytochrome b6f molecule and leaves photosystem II. The reactions outlined above in the section concerning purple bacteria give a general illustration of the actual movement of the electrons through pheophytin and the photosystem. The overall scheme is:

  1. Excitation
  2. Charge separation
  3. Plastoquinone reduction
  4. Regeneration of substrates

See also

[edit]

References

[edit]

References

[edit]
  1. ^ http://dictionary.reference.com/browse/pheophytin Merriam-Webster Medical Dictionary definition of Pheophytin
  • ^ http://dictionary.reference.com/browse/pheo- Definition of pheo in The American Heritage Stedman's Medical Dictionary
  • ^ phyt. CollinsDictionary.com. Collins English Dictionary - Complete & Unabridged 11th Edition. Retrieved October 19, 2012.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Pheophytin&oldid=1231514151"

    Categories: 
    Photosynthetic pigments
    Tetrapyrroles
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
    Wikipedia articles needing clarification from August 2016
     



    This page was last edited on 28 June 2024, at 18:17 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki