Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 History  





2 Phong interpolation  





3 Phong reflection model  





4 See also  





5 References  














Phong shading






العربية
Čeština
Deutsch
Español
Esperanto
فارسی
Français
Bahasa Indonesia
Italiano
Latviešu
Magyar

Norsk bokmål
Polski
Português
Русский
Slovenčina
Српски / srpski
Suomi

Українська
Tiếng Vit

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Flat shading (left) versus Phong shading (right)

In3D computer graphics, Phong shading, Phong interpolation,[1]ornormal-vector interpolation shading[2] is an interpolation technique for surface shading invented by computer graphics pioneer Bui Tuong Phong. Phong shading interpolates surface normals across rasterized polygons and computes pixel colors based on the interpolated normals and a reflection model. Phong shading may also refer to the specific combination of Phong interpolation and the Phong reflection model.

History[edit]

Phong shading and the Phong reflection model were developed at the University of UtahbyBui Tuong Phong, who published them in his 1973 Ph.D. dissertation[3][4] and a 1975 paper.[5] Phong's methods were considered radical at the time of their introduction, but have since become the de facto baseline shading method for many rendering applications.[citation needed] Phong's methods have proven popular due to their generally efficient use of computation time per rendered pixel.[citation needed]

Phong interpolation[edit]

Phong shading improves upon Gouraud shading and provides a better approximation of the shading of a smooth surface. Phong shading assumes a smoothly varying surface normal vector. The Phong interpolation method works better than Gouraud shading when applied to a reflection model with small specular highlights such as the Phong reflection model.

The most serious problem with Gouraud shading occurs when specular highlights are found in the middle of a large polygon. Since these specular highlights are absent from the polygon's vertices and Gouraud shading interpolates based on the vertex colors, the specular highlight will be missing from the polygon's interior. This problem is fixed by Phong shading.

Unlike Gouraud shading, which interpolates colors across polygons, in Phong shading, a normal vector is linearly interpolated across the surface of the polygon from the polygon's vertex normals. The surface normal is interpolated and normalized at each pixel and then used in a reflection model, e.g. the Phong reflection model, to obtain the final pixel color. Phong shading is more computationally expensive than Gouraud shading since the reflection model must be computed at each pixel instead of at each vertex.

In modern graphics hardware, variants of this algorithm are implemented using pixel or fragment shaders.

Phong reflection model[edit]

Phong shading may also refer to the specific combination of Phong interpolation and the Phong reflection model, which is an empirical model of local illumination. It describes the way a surface reflects light as a combination of the diffuse reflection of rough surfaces with the specular reflection of shiny surfaces. It is based on Bui Tuong Phong's informal observation that shiny surfaces have small intense specular highlights, while dull surfaces have large highlights that fall off more gradually. The reflection model also includes an ambient term to account for the small amount of light that is scattered about the entire scene.

Visual illustration of the Phong equation: here the light is white, the ambient and diffuse colors are both blue, and the specular color is white, reflecting a small part of the light hitting the surface, but only in very narrow highlights. The intensity of the diffuse component varies with the direction of the surface, and the ambient component is uniform (independent of direction).

See also[edit]

References[edit]

  1. ^ Watt, Alan H.; Watt, Mark (1992). Advanced Animation and Rendering Techniques: Theory and Practice. Addison-Wesley Professional. pp. 21–26. ISBN 978-0-201-54412-1.
  • ^ Foley, James D.; van Dam, Andries; Feiner, Steven K.; Hughes, John F. (1996). Computer Graphics: Principles and Practice. (2nd ed. in C). Addison-Wesley Publishing Company. pp. 738–739. ISBN 0-201-84840-6.
  • ^ Bui Tuong Phong, Illumination of Computer-Generated Images, Department of Computer Science, University of Utah, UTEC-CSc-73-129, July 1973.
  • ^ University of Utah School of Computing, History
  • ^ Bui Tuong Phong, "Illumination for Computer Generated Pictures," Comm. ACM, Vol 18(6):311-317, June 1975.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Phong_shading&oldid=1213942475"

    Categories: 
    Computer graphics algorithms
    Shading
    Vietnamese inventions
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from December 2019
     



    This page was last edited on 16 March 2024, at 01:38 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki