Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 References  





2 External links  














Photometric redshift






Español
فارسی
Français
Italiano
Русский
Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Aphotometric redshift is an estimate for the recession velocity of an astronomical object such as a galaxyorquasar, made without measuring its spectrum. The technique uses photometry (that is, the brightness of the object viewed through various standard filters, each of which lets through a relatively broad passband of colours, such as red light, green light, or blue light) to determine the redshift, and hence, through Hubble's law, the distance, of the observed object.

The technique was developed in the 1960s,[1] but was largely replaced in the 1970s and 1980s by spectroscopic redshifts, using spectroscopy to observe the frequency (orwavelength) of characteristic spectral lines, and measure the shift of these lines from their laboratory positions. The photometric redshift technique has come back into mainstream use since 2000, as a result of large sky surveys conducted in the late 1990s and 2000s which have detected a large number of faint high-redshift objects, and telescope time limitations mean that only a small fraction of these can be observed by spectroscopy. Photometric redshifts were originally determined by calculating the expected observed data from a known emission spectrum at a range of redshifts. The technique relies upon the spectrum of radiation being emitted by the object having strong features that can be detected by the relatively crude filters.

As photometric filters are sensitive to a range of wavelengths, and the technique relies on making many assumptions about the nature of the spectrum at the light-source, errors for these sorts of measurements can range up to δz = 0.5, and are much less reliable than spectroscopic determinations.[2] In the absence of sufficient telescope time to determine a spectroscopic redshift for each object, the technique of photometric redshifts provides a method to determine an at least qualitative characterization of a redshift. For example, if a Sun-like spectrum had a redshift of z = 1, it would be brightest in the infrared rather than at the yellow-green color associated with the peak of its blackbody spectrum, and the light intensity will be reduced in the filter by a factor of two (i.e. 1+z) (see K correction for more details on the photometric consequences of redshift).[3]

Other means of estimating the redshift based on alternative observed quantities have been developed, like morphological redshifts of galaxy clusters derived from geometric measurements.[4] In recent years, Bayesian statistical methods and artificial neural networks have been used to estimate redshifts from photometric data.

References[edit]

  1. ^ The technique was first described by Baum, W. A.: 1962, in G. C. McVittie (ed.), Problems of extra-galactic research, p. 390, IAU Symposium No. 15
  • ^ Bolzonella, M.; Miralles, J.-M.; Pelló, R., Photometric redshifts based on standard SED fitting procedures, Astronomy and Astrophysics, 363, p.476-492 (2000).
  • ^ A pedagogical overview of the K-correction by David Hogg and other members of the SDSS collaboration can be found at astro-ph.
  • ^ J.M. Diego et al. Morphological redshift estimates for galaxy clusters in a Sunyaev-Zel'dovich effect survey[1].
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Photometric_redshift&oldid=1216638019"

    Category: 
    Doppler effects
     



    This page was last edited on 1 April 2024, at 05:16 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki