Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Description  



1.1  Languages  





1.2  Special features  







2 Scope of application  



2.1  Calculation of enterprise characteristics  





2.2  Visualization  







3 Used in  





4 Application history  





5 References  





6 Further reading  





7 External links  














Plant Simulation






Deutsch
Español
Magyar
Русский
Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Tecnomatix Plant Simulation
Developer(s)Siemens Digital Industries Software
Stable release

Tecnomatix Plant Simulation 2302 / 2023 [1]

Operating systemWindows 10&11 32 bit + 64 bit /Windows XP/Vista
Available inEnglish, German, Chinese
TypeDiscrete event simulation
LicenseCommercial
WebsitePlant Simulation

Plant Simulation is a computer application developed by Siemens Digital Industries Software for modelling, simulating, analyzing, visualizing and optimizing production systems and processes, the flow of materials and logistic operations.[2] Plant Simulation,[3] allows users to optimize material flow and resource utilization and logistics for all levels of plant planning from global production facilities, through local plants, to specific lines. Within the Plant Design and Optimization Solution, the software portfolio, to which Plant Simulation belongs, is — together with the products of the Digital Factory and of Digital Manufacturing — part of the Product Lifecycle Management Software (PLM). The application allows comparing complex production alternatives, including the immanent process logic, by means of computer simulations. Plant Simulation is used by individual production planners as well as by multi-national enterprises, primarily to strategically plan layout, and control logic and dimensions of large, complex production investments.[4] It is one of the major products that dominate that market space.

Description[edit]

Plant Simulation is a Material flow simulation Software (Discrete Event Simulation; DES Software). Using simulation, complex and dynamic enterprise workflows are evaluated to arrive at mathematically safeguarded entrepreneurial decisions. The Computer model allows the user to execute experiments and run through 'what if scenarios' without either having to experiment with the real production environment or when applied within the planning phase, long before the real system exists. In general, the Material flow analysis is used when discrete production processes are running. These processes are characterized by non-steady material flows, which means that the part is either there or not there, the shift takes place or does not take place, and the machine works without errors or reports a failure. These processes resist simple mathematical descriptions and derivations due to numerous dependencies. Before powerful computers were available, most problems of material flow simulation were solved by means of queuing theory and operations research methods. In most cases, the solutions resulting from these calculations were hard to understand and were marked by a large number of boundary conditions and restrictions that were hard to abide by in reality.

Languages[edit]

Plant Simulation is available in English, German, Japanese, Hungarian, Russian and Chinese. The user can create individual Dialog boxes using double-byte characters and offering individual parameterizations. The user can switch between the available languages.

Special features[edit]

Scope of application[edit]

Calculation of enterprise characteristics[edit]

Goal:

Visualization[edit]

Plant Simulation can be used to display production both in 2D and 3D. The 3D display is especially helpful as a sales tool or for in-house communication of planned measures. In addition it allows to present the entire system concept within a virtual, interactive, immersive environment to non-simulation experts.[5] The 3D engine is based on the industry standard JT format. CAD applications such as NX, Solid Edge can export models in this format. The 3D data files can be imported in the JT format '.jt' by using Drag-and-drop.

Used in[edit]

Plant Simulation is used in most industries, most noticeably:

Application history[edit]

Year Company Product name
1986 The Fraunhofer Institute for Manufacturing Engineering and Automation develops an object-oriented, hierarchical simulation program for the Apple Macintosh SIMPLE Mac for Apple Macintosh
1990 AIS (Angewande Informations Systeme, Stuttgart) founded SIMPLE++ (Simulation in Produktion Logistik and Engineering)
1991 AIS renamed to AESOP (Angewande EDV-Systeme zur optimierten Planung) SIMPLE++ (Simulation in Produktion Logistik und Engineering)
1997 AESOP acquired by Tecnomatix Ltd. 2000 SIMPLE++ renamed to eM-Plant
2004 Tecnomatix Ltd. acquired by UGS Corporation 2005 eM-Plant renamed to Tecnomatix Plant Simulation
2007 UGS Corporation acquired by Siemens AG[12] Tecnomatix Plant Simulation

References[edit]

  1. ^ Phelan, Jim (June 23, 2009). "Siemens PLM Software Launches Tecnomatix 10 to Increase Planning and Manufacturing Productivity". Thomson Reuters 2009. Archived from the original on February 1, 2013.
  • ^ "Plant Simulation". Siemens PLM. 2010. Archived from the original on 2009-08-03. Retrieved 2009-09-04.
  • ^ "Tecnomatix Plant Simulation". 4D Systems. Archived from the original on 2022-06-29. Retrieved 2022-04-18.
  • ^ Koenig, Prof. Dr.-Ing. Markus. "Visual simulation - an appropriate approach to support execution planning in building engineering" (PDF). Archived from the original (PDF) on 2011-07-18. Retrieved 2009-09-14.
  • ^ Jallas, Eric (February 2009). "Mechanistic Virtual Modeling: Coupling a Plant Simulation Model with a Three-dimensional Plant Architecture Component". Environmental Modeling and Assessment. 14 (1): 29–45. doi:10.1007/s10666-008-9164-4. ISSN 1420-2026. S2CID 110236902.
  • ^ Heinrich, Stephan (2008). "Optimizing the Color Sorting Store" (PDF). Promasim. Archived from the original (PDF) on 2011-07-07.
  • ^ Hanreich, Klaus (May 2005). "To shorten process times and retain ontime delivery of maintenanced aerospace engines, MTU Aero Engines built a new assembly hall that it designed to stabilize maintenance processes that are effectively supported by materialflow-oriented production methods" (PDF). Aerospace Engineering. Archived from the original (PDF) on 2011-06-05. Retrieved 2009-09-14.
  • ^ Hasenschwanz, Werner (January 2009). "PRACTICAL AND USEFUL RESULTS; Process simulation in a brewery" (PDF). BBII. Archived (PDF) from the original on 2011-04-15. Retrieved 2009-09-14.
  • ^ Steinhauer, Dirk (2008). "Simulation Aided Production Planning in Shipyards" (PDF). Flensburger Shipyard.[permanent dead link]
  • ^ Caprace, Jean-David (December 2006). "Minimization of Production Cost by use of an Automatic Cost Assessment Method and Simulation". Journal of Harbin Engineering University. 27 Suppl. The AsiaLink-EAMARNET International Conference on Ship Design, Production &Operation: 399–408. Archived from the original on 2016-03-03. Retrieved 2009-09-14.
  • ^ Park, Eun-Jung (December 2007). "A SIMULATION MODEL WITH A LOW LEVEL OF DETAIL FOR CONTAINER TERMINALS AND ITS APPLICATIONS" (PDF). Proceedings of the 2007 Winter Simulation Conference, page 2004-2011. Archived (PDF) from the original on 2011-04-29. Retrieved 2009-09-14.
  • ^ "Siemens AG to buy UGS". Dallas Business Journal. January 25, 2007. [dead link]
  • Further reading[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Plant_Simulation&oldid=1212092560"

    Categories: 
    Product lifecycle management
    Project management software
    Siemens software products
    Simulation software
    Business software for Windows
    Hidden categories: 
    All articles with dead external links
    Articles with dead external links from May 2019
    Articles with permanently dead external links
    CS1: long volume value
    Articles with dead external links from December 2010
    Articles with NKC identifiers
     



    This page was last edited on 6 March 2024, at 03:42 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki