Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Determination  





2 See also  





3 Notes  














Plug flow






Deutsch
فارسی
Nederlands
Português
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Influid mechanics, plug flow is a simple model of the velocity profile of a fluid flowing in a pipe. In plug flow, the velocity of the fluid is assumed to be constant across any cross-section of the pipe perpendicular to the axis of the pipe. The plug flow model assumes there is no boundary layer adjacent to the inner wall of the pipe.

The plug flow model has many practical applications. One example is in the design of chemical reactors. Essentially no back mixing is assumed with "plugs" of fluid passing through the reactor. This results in differential equations that need to be integrated to find the reactor conversion and outlet temperatures. Other simplifications used are perfect radial mixing and a homogeneous bed structure.

An advantage of the plug flow model is that no part of the solution of the problem can be perpetuated "upstream". This allows one to calculate the exact solution to the differential equation knowing only the initial conditions. No further iteration is required. Each "plug" can be solved independently provided the previous plug's state is known.

The flow model in which the velocity profile consists of the fully developed boundary layer is known as pipe flow. In laminar pipe flow, the velocity profile is parabolic.[1]

Determination

[edit]

For flows in pipes, if flow is turbulent then the laminar sublayer caused by the pipe wall is so thin that it is negligible. Plug flow will be achieved if the sublayer thickness is much less than the pipe diameter (<<D).

[2]
[3]

where is the Darcy friction factor (from the above equation or the Moody Chart), is the sublayer thickness, is the pipe diameter, is the density, is the friction velocity (not an actual velocity of the fluid), is the average velocity of the plug (in the pipe), is the shear on the wall, and is the pressure loss down the length of the pipe. is the relative roughness of the pipe. In this regime the pressure drop is a result of inertia-dominated turbulent shear stress rather than viscosity-dominated laminar shear stress.

See also

[edit]

Notes

[edit]
  1. ^ Massey, Bernard; Ward-Smith, John (1999). "6.2 Steady laminar flow in circular pipes: The Hagen-Poiseuille law". Mechanics of fluids (7th ed.). Cheltenham: Thornes. ISBN 9780748740437.
  • ^ Munson, Bruce R.; Young, Donald F.; Okiishi, Theodore H. (2006). "Section 8.4". Fundamentals of fluid mechanics (5th ed.). Hoboken, NJ: Wiley. ISBN 9780471675822.
  • ^ Engineers Edge. "Pressure Drop Along Pipe Length". Engineers Edge, LLC. Retrieved 17 April 2018.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Plug_flow&oldid=1186024533"

    Category: 
    Fluid dynamics
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 20 November 2023, at 13:06 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki