Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 The theorem  





2 Application to axonometry  





3 Remarks on Schwarz's proof  





4 Notes  





5 References  





6 External links  














Pohlke's theorem






Deutsch
Español
Français
Italiano
Polski
Русский
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Pohlke's theorem is the fundamental theorem of axonometry. It was established 1853 by the German painter and teacher of descriptive geometry Karl Wilhelm Pohlke. The first proof of the theorem was published 1864 by the German mathematician Hermann Amandus Schwarz, who was a student of Pohlke. Therefore the theorem is sometimes called theorem of Pohlke and Schwarz, too.

The theorem[edit]

Pohlke's theorem

For a mapping of a unit cube, one has to apply an additional scaling either in the space or in the plane. Because a parallel projection and a scaling preserves ratios one can map an arbitrary point by the axonometric procedure below.

Pohlke's theorem can be stated in terms of linear algebra as:

Application to axonometry[edit]

the principle of axonometric projection

Pohlke's theorem is the justification for the following easy procedure to construct a scaled parallel projection of a 3-dimensional object using coordinates,:[2][3]

  1. Choose the images of the coordinate axes, not contained in a line.
  2. Choose for any coordinate axis forshortenings
  3. The image of a point is determined by the three steps, starting at point :
goin-direction, then
goin-direction, then
goin-direction and
4. mark the point as .

In order to get undistorted pictures, one has to choose the images of the axes and the forshortenings carefully (see Axonometry). In order to get an orthographic projection only the images of the axes are free and the forshortenings are determined. (see de:orthogonale Axonometrie).

Remarks on Schwarz's proof[edit]

Schwarz formulated and proved the more general statement:

and used a theorem of L’Huilier:

Notes[edit]

  1. ^ G. Pickert: Vom Satz von Pohlke zur linearen Algebra, Didaktik der Mathematik 11 (1983), 4, pp. 297–306.
  • ^ Ulrich Graf, Martin Barner: Darstellende Geometrie. Quelle & Meyer, Heidelberg 1961, ISBN 3-494-00488-9, p.144.
  • ^ Roland Stärk: Darstellende Geometrie, Schöningh, 1978, ISBN 3-506-37443-5, p.156.
  • ^ Sklenáriková, Zita; Pémová, Marta (2007). "The Pohlke–Schwarz Theorem and its Relevancy in the Didactics of Mathematics" (PDF). Quaderni di Ricerca in Didattica (17). G.R.I.M. (Department of Mathematics, University of Palermo, Italy): 155.
  • References[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Pohlke%27s_theorem&oldid=1219317721"

    Categories: 
    Graphical projections
    Linear algebra
     



    This page was last edited on 17 April 2024, at 01:03 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki