Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Two-dimensional Poisson kernels  



1.1  On the unit disc  





1.2  On the upper half-plane  







2 On the ball  





3 On the upper half-space  





4 See also  





5 References  














Poisson kernel






Български
Deutsch
Español
فارسی
Français
Հայերեն
Italiano
עברית
Қазақша

Polski
Русский
Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


In mathematics, and specifically in potential theory, the Poisson kernel is an integral kernel, used for solving the two-dimensional Laplace equation, given Dirichlet boundary conditions on the unit disk. The kernel can be understood as the derivative of the Green's function for the Laplace equation. It is named for Siméon Poisson.

Poisson kernels commonly find applications in control theory and two-dimensional problems in electrostatics. In practice, the definition of Poisson kernels are often extended to n-dimensional problems.

Two-dimensional Poisson kernels[edit]

On the unit disc[edit]

In the complex plane, the Poisson kernel for the unit disc [1] is given by

This can be thought of in two ways: either as a function of r and θ, or as a family of functions of θ indexed by r.

If is the open unit discinC, T is the boundary of the disc, and f a function on T that lies in L1(T), then the function u given by isharmonicinD and has a radial limit that agrees with f almost everywhere on the boundary T of the disc.

That the boundary value of uisf can be argued using the fact that as r → 1, the functions Pr(θ) form an approximate unit in the convolution algebra L1(T). As linear operators, they tend to the Dirac delta function pointwise on Lp(T). By the maximum principle, u is the only such harmonic function on D.

Convolutions with this approximate unit gives an example of a summability kernel for the Fourier series of a function in L1(T) (Katznelson 1976). Let fL1(T) have Fourier series {fk}. After the Fourier transform, convolution with Pr(θ) becomes multiplication by the sequence {r|k|} ∈ 1(Z).[further explanation needed] Taking the inverse Fourier transform of the resulting product {r|k|fk} gives the Abel means Arfoff:

Rearranging this absolutely convergent series shows that f is the boundary value of g + h, where g (resp. h) is a holomorphic (resp. antiholomorphic) function on D.

When one also asks for the harmonic extension to be holomorphic, then the solutions are elements of a Hardy space. This is true when the negative Fourier coefficients of f all vanish. In particular, the Poisson kernel is commonly used to demonstrate the equivalence of the Hardy spaces on the unit disk, and the unit circle.

The space of functions that are the limits on T of functions in Hp(z) may be called Hp(T). It is a closed subspace of Lp(T) (at least for p ≥ 1). Since Lp(T) is a Banach space (for 1 ≤ p ≤ ∞), so is Hp(T).

On the upper half-plane[edit]

The unit disk may be conformally mapped to the upper half-plane by means of certain Möbius transformations. Since the conformal map of a harmonic function is also harmonic, the Poisson kernel carries over to the upper half-plane. In this case, the Poisson integral equation takes the form

The kernel itself is given by

Given a function , the Lp space of integrable functions on the real line, u can be understood as a harmonic extension of f into the upper half-plane. In analogy to the situation for the disk, when u is holomorphic in the upper half-plane, then u is an element of the Hardy space, and in particular,

Thus, again, the Hardy space Hp on the upper half-plane is a Banach space, and, in particular, its restriction to the real axis is a closed subspace of The situation is only analogous to the case for the unit disk; the Lebesgue measure for the unit circle is finite, whereas that for the real line is not.

On the ball[edit]

For the ball of radius the Poisson kernel takes the form where (the surface of ), and is the surface area of the unit (n − 1)-sphere.

Then, if u(x) is a continuous function defined on S, the corresponding Poisson integral is the function P[u](x) defined by

It can be shown that P[u](x) is harmonic on the ball and that P[u](x) extends to a continuous function on the closed ball of radius r, and the boundary function coincides with the original function u.

On the upper half-space[edit]

An expression for the Poisson kernel of an upper half-space can also be obtained. Denote the standard Cartesian coordinates of by The upper half-space is the set defined by The Poisson kernel for Hn+1 is given by where

The Poisson kernel for the upper half-space appears naturally as the Fourier transform of the Abel transform in which t assumes the role of an auxiliary parameter. To wit, In particular, it is clear from the properties of the Fourier transform that, at least formally, the convolution is a solution of Laplace's equation in the upper half-plane. One can also show that as t → 0, P[u](t,x) → u(x) in a suitable sense.

See also[edit]

References[edit]

  1. ^ "complex analysis - Deriving the Poisson Integral Formula from the Cauchy Integral Formula". Mathematics Stack Exchange. Retrieved 2022-08-21.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Poisson_kernel&oldid=1226108381"

Categories: 
Fourier analysis
Harmonic functions
Potential theory
Hidden categories: 
Articles with short description
Short description matches Wikidata
Articles lacking in-text citations from February 2021
All articles lacking in-text citations
Wikipedia articles needing clarification from January 2015
 



This page was last edited on 28 May 2024, at 16:09 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki