Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  





2 Properties  



2.1  Pontryagin classes and curvature  





2.2  Pontryagin classes of a manifold  





2.3  Pontryagin classes from Chern classes  





2.4  Pontryagin classes on a Quartic K3 Surface  







3 Pontryagin numbers  



3.1  Properties  







4 Generalizations  





5 See also  





6 References  





7 External links  














Pontryagin class






Deutsch
Français


Português
Русский
Svenska
Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematics, the Pontryagin classes, named after Lev Pontryagin, are certain characteristic classes of real vector bundles. The Pontryagin classes lie in cohomology groups with degrees a multiple of four.

Definition[edit]

Given a real vector bundle over , its -th Pontryagin class is defined as

where:

The rational Pontryagin class is defined to be the image of in, the -cohomology group of with rational coefficients.

Properties[edit]

The total Pontryagin class

is (modulo 2-torsion) multiplicative with respect to Whitney sum of vector bundles, i.e.,

for two vector bundles and over . In terms of the individual Pontryagin classes ,

and so on.

The vanishing of the Pontryagin classes and Stiefel–Whitney classes of a vector bundle does not guarantee that the vector bundle is trivial. For example, up to vector bundle isomorphism, there is a unique nontrivial rank 10 vector bundle over the 9-sphere. (The clutching function for arises from the homotopy group .) The Pontryagin classes and Stiefel-Whitney classes all vanish: the Pontryagin classes don't exist in degree 9, and the Stiefel–Whitney class of vanishes by the Wu formula . Moreover, this vector bundle is stably nontrivial, i.e. the Whitney sumof with any trivial bundle remains nontrivial. (Hatcher 2009, p. 76)

Given a -dimensional vector bundle we have

where denotes the Euler classof, and denotes the cup product of cohomology classes.

Pontryagin classes and curvature[edit]

As was shown by Shiing-Shen Chern and André Weil around 1948, the rational Pontryagin classes

can be presented as differential forms which depend polynomially on the curvature form of a vector bundle. This Chern–Weil theory revealed a major connection between algebraic topology and global differential geometry.

For a vector bundle over a -dimensional differentiable manifold equipped with a connection, the total Pontryagin class is expressed as

where denotes the curvature form, and denotes the de Rham cohomology groups.[1]

Pontryagin classes of a manifold[edit]

The Pontryagin classes of a smooth manifold are defined to be the Pontryagin classes of its tangent bundle.

Novikov proved in 1966 that if two compact, oriented, smooth manifolds are homeomorphic then their rational Pontryagin classes in are the same.

If the dimension is at least five, there are at most finitely many different smooth manifolds with given homotopy type and Pontryagin classes.

Pontryagin classes from Chern classes[edit]

The Pontryagin classes of a complex vector bundle is completely determined by its Chern classes. This follows from the fact that , the Whitney sum formula, and properties of Chern classes of its complex conjugate bundle. That is, and . Then, this given the relation

[2]

for example, we can apply this formula to find the Pontryagin classes of a complex vector bundle on a curve and a surface. For a curve, we have

so all of the Pontryagin classes of complex vector bundles are trivial. On a surface, we have

showing . On line bundles this simplifies further since by dimension reasons.

Pontryagin classes on a Quartic K3 Surface[edit]

Recall that a quartic polynomial whose vanishing locus in is a smooth subvariety is a K3 surface. If we use the normal sequence

we can find

showing and . Since corresponds to four points, due to Bézout's lemma, we have the second chern number as . Since in this case, we have

. This number can be used to compute the third stable homotopy group of spheres.[3]

Pontryagin numbers[edit]

Pontryagin numbers are certain topological invariants of a smooth manifold. Each Pontryagin number of a manifold vanishes if the dimension of is not divisible by 4. It is defined in terms of the Pontryagin classes of the manifold as follows:

Given a smooth -dimensional manifold and a collection of natural numbers

such that ,

the Pontryagin number is defined by

where denotes the -th Pontryagin class and the fundamental classof.

Properties[edit]

  1. Pontryagin numbers are oriented cobordism invariant; and together with Stiefel-Whitney numbers they determine an oriented manifold's oriented cobordism class.
  2. Pontryagin numbers of closed Riemannian manifolds (as well as Pontryagin classes) can be calculated as integrals of certain polynomials from the curvature tensor of a Riemannian manifold.
  3. Invariants such as signature and -genus can be expressed through Pontryagin numbers. For the theorem describing the linear combination of Pontryagin numbers giving the signature see Hirzebruch signature theorem.

Generalizations[edit]

There is also a quaternionic Pontryagin class, for vector bundles with quaternion structure.

See also[edit]

References[edit]

  1. ^ "De Rham Cohomology - an overview | ScienceDirect Topics". www.sciencedirect.com. Retrieved 2022-02-02.
  • ^ Mclean, Mark. "Pontryagin Classes" (PDF). Archived (PDF) from the original on 2016-11-08.
  • ^ "A Survey of Computations of Homotopy Groups of Spheres and Cobordisms" (PDF). p. 16. Archived (PDF) from the original on 2016-01-22.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Pontryagin_class&oldid=1232953301"

    Categories: 
    Characteristic classes
    Differential topology
     



    This page was last edited on 6 July 2024, at 14:23 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki