Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definitions  



1.1  Total order  





1.2  Positive cone  





1.3  Equivalence of the two definitions  







2 Examples of ordered fields  





3 Properties of ordered fields  



3.1  Vector spaces over an ordered field  







4 Orderability of fields  





5 Topology induced by the order  





6 Harrison topology  





7 Fans and superordered fields  





8 See also  





9 Notes  





10 References  














Ordered field






العربية
Dansk
Deutsch
Español
فارسی
Français

Bahasa Indonesia
Italiano
עברית
Magyar

Polski
Português
Русский
Slovenčina
Українська


 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 

(Redirected from Positive cone of an ordered field)

Inmathematics, an ordered field is a field together with a total ordering of its elements that is compatible with the field operations. Basic examples of ordered fields are the rational numbers and the real numbers, both with their standard orderings.

Every subfield of an ordered field is also an ordered field in the inherited order. Every ordered field contains an ordered subfield that is isomorphic to the rational numbers. Every Dedekind-complete ordered field is isomorphic to the reals. Squares are necessarily non-negative in an ordered field. This implies that the complex numbers cannot be ordered since the square of the imaginary unit iis−1 (which is negative in any ordered field). Finite fields cannot be ordered.

Historically, the axiomatization of an ordered field was abstracted gradually from the real numbers, by mathematicians including David Hilbert, Otto Hölder and Hans Hahn. This grew eventually into the Artin–Schreier theory of ordered fields and formally real fields.

Definitions[edit]

There are two equivalent common definitions of an ordered field. The definition of total order appeared first historically and is a first-order axiomatization of the ordering as a binary predicate. Artin and Schreier gave the definition in terms of positive cone in 1926, which axiomatizes the subcollection of nonnegative elements. Although the latter is higher-order, viewing positive cones as maximal prepositive cones provides a larger context in which field orderings are extremal partial orderings.

Total order[edit]

Afield together with a total order on is an ordered field if the order satisfies the following properties for all

As usual, we write for and . The notations and stand for and , respectively. Elements with are called positive.

Positive cone[edit]

Aprepositive coneorpreordering of a field is a subset that has the following properties:[1]

Apreordered field is a field equipped with a preordering Its non-zero elements form a subgroup of the multiplicative group of

If in addition, the set is the union of and we call apositive coneof The non-zero elements of are called the positive elements of

An ordered field is a field together with a positive cone

The preorderings on are precisely the intersections of families of positive cones on The positive cones are the maximal preorderings.[1]

Equivalence of the two definitions[edit]

Let be a field. There is a bijection between the field orderings of and the positive cones of

Given a field ordering ≤ as in the first definition, the set of elements such that forms a positive cone of Conversely, given a positive cone of as in the second definition, one can associate a total ordering on by setting to mean This total ordering satisfies the properties of the first definition.

Examples of ordered fields[edit]

Examples of ordered fields are:

The surreal numbers form a proper class rather than a set, but otherwise obey the axioms of an ordered field. Every ordered field can be embedded into the surreal numbers.

Properties of ordered fields[edit]

The property
The property

For every a, b, c, dinF:

Every subfield of an ordered field is also an ordered field (inheriting the induced ordering). The smallest subfield is isomorphic to the rationals (as for any other field of characteristic 0), and the order on this rational subfield is the same as the order of the rationals themselves.

If every element of an ordered field lies between two elements of its rational subfield, then the field is said to be Archimedean. Otherwise, such field is a non-Archimedean ordered field and contains infinitesimals. For example, the real numbers form an Archimedean field, but hyperreal numbers form a non-Archimedean field, because it extends real numbers with elements greater than any standard natural number.[4]

An ordered field F is isomorphic to the real number field R if and only if every non-empty subset of F with an upper bound in F has a least upper bound in F. This property implies that the field is Archimedean.

Vector spaces over an ordered field[edit]

Vector spaces (particularly, n-spaces) over an ordered field exhibit some special properties and have some specific structures, namely: orientation, convexity, and positively-definite inner product. See Real coordinate space#Geometric properties and uses for discussion of those properties of Rn, which can be generalized to vector spaces over other ordered fields.

Orderability of fields[edit]

Every ordered field is a formally real field, i.e., 0 cannot be written as a sum of nonzero squares.[2][3]

Conversely, every formally real field can be equipped with a compatible total order, that will turn it into an ordered field. (This order need not be uniquely determined.) The proof uses Zorn's lemma.[5]

Finite fields and more generally fields of positive characteristic cannot be turned into ordered fields, as shown above. The complex numbers also cannot be turned into an ordered field, as −1 is a square of the imaginary unit i. Also, the p-adic numbers cannot be ordered, since according to Hensel's lemma Q2 contains a square root of −7, thus 12 + 12 + 12 + 22 + −72 = 0, and Qp (p > 2) contains a square root of 1 − p, thus (p − 1)⋅12 + 1 − p2 = 0.[6]

Topology induced by the order[edit]

IfF is equipped with the order topology arising from the total order ≤, then the axioms guarantee that the operations + and × are continuous, so that F is a topological field.

Harrison topology[edit]

The Harrison topology is a topology on the set of orderings XF of a formally real field F. Each order can be regarded as a multiplicative group homomorphism from F onto ±1. Giving ±1 the discrete topology and ±1F the product topology induces the subspace topologyonXF. The Harrison sets form a subbasis for the Harrison topology. The product is a Boolean space (compact, Hausdorff and totally disconnected), and XF is a closed subset, hence again Boolean.[7][8]

Fans and superordered fields[edit]

AfanonF is a preordering T with the property that if S is a subgroup of index 2 in F containing T − {0} and not containing −1 then S is an ordering (that is, S is closed under addition).[9]Asuperordered field is a totally real field in which the set of sums of squares forms a fan.[10]

See also[edit]

Notes[edit]

  1. ^ a b Lam (2005) p. 289
  • ^ a b Lam (2005) p. 41
  • ^ a b Lam (2005) p. 232
  • ^ Bair, Jaques; Henry, Valérie. "Implicit differentiation with microscopes" (PDF). University of Liège. Retrieved 2013-05-04.
  • ^ Lam (2005) p. 236
  • ^ The squares of the square roots −7 and 1 − p are in Q, but are < 0, so that these roots cannot be in Q which means that their p-adic expansions are not periodic.
  • ^ Lam (2005) p. 271
  • ^ Lam (1983) pp. 1–2
  • ^ Lam (1983) p. 39
  • ^ Lam (1983) p. 45
  • References[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Ordered_field&oldid=1228273275#Positive_cone"

    Categories: 
    Real algebraic geometry
    Ordered algebraic structures
    Ordered groups
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Pages displaying short descriptions of redirect targets via Module:Annotated link
    Pages displaying wikidata descriptions as a fallback via Module:Annotated link
     



    This page was last edited on 10 June 2024, at 10:00 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki