Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Axioms  



1.1  Extensionality  





1.2  Positive comprehension  





1.3  Closure  





1.4  Infinity  







2 Interesting properties  





3 See also  





4 References  














Positive set theory







 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematical logic, positive set theory is the name for a class of alternative set theories in which the axiom of comprehension holds for at least the positive formulas (the smallest class of formulas containing atomic membership and equality formulas and closed under conjunction, disjunction, existential and universal quantification).

Typically, the motivation for these theories is topological: the sets are the classes which are closed under a certain topology. The closure conditions for the various constructions allowed in building positive formulas are readily motivated (and one can further justify the use of universal quantifiers bounded in sets to get generalized positive comprehension): the justification of the existential quantifier seems to require that the topology be compact.

Axioms[edit]

The set theory of Olivier Esser consists of the following axioms:[1]

Extensionality[edit]

Positive comprehension[edit]

where is a positive formula. A positive formula uses only the logical constants but not .

Closure[edit]

where is a formula. That is, for every formula , the intersection of all sets which contain every such that exists. This is called the closure of and is written in any of the various ways that topological closures can be presented. This can be put more briefly if class language is allowed (any condition on sets defining a class as in NBG): for any class C there is a set which is the intersection of all sets which contain C as a subclass. This is a reasonable principle if the sets are understood as closed classes in a topology.

Infinity[edit]

The von Neumann ordinal exists. This is not an axiom of infinity in the usual sense; if Infinity does not hold, the closure of exists and has itself as its sole additional member (it is certainly infinite); the point of this axiom is that contains no additional elements at all, which boosts the theory from the strength of second order arithmetic to the strength of Morse–Kelley set theory with the proper class ordinal a weakly compact cardinal.

Interesting properties[edit]

See also[edit]

References[edit]

  1. ^ Holmes, M. Randall (21 September 2021). "Alternative Axiomatic Set Theories". In Zalta, Edward N. (ed.). Stanford Encyclopedia of Philosophy.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Positive_set_theory&oldid=1223680329"

Category: 
Systems of set theory
Hidden categories: 
Articles with short description
Short description matches Wikidata
 



This page was last edited on 13 May 2024, at 17:30 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki