Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 

















Power-law fluid






Deutsch
Español
فارسی
Français

Русский

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Incontinuum mechanics, a power-law fluid, or the Ostwald–de Waele relationship, is a type of generalized Newtonian fluid (time-independent non-Newtonian fluid) for which the shear stress, τ, is given by

where:

The quantity

represents an apparentoreffective viscosity as a function of the shear rate (SI unit Pa s). The value of K and n can be obtained from the graph of and . The slope line gives the value of n – 1, from which n can be calculated. The intercept at gives the value of .

Also known as the Ostwaldde Waele power law[1][2] this mathematical relationship is useful because of its simplicity, but only approximately describes the behaviour of a real non-Newtonian fluid. For example, if n were less than one, the power law predicts that the effective viscosity would decrease with increasing shear rate indefinitely, requiring a fluid with infinite viscosity at rest and zero viscosity as the shear rate approaches infinity, but a real fluid has both a minimum and a maximum effective viscosity that depend on the physical chemistry at the molecular level. Therefore, the power law is only a good description of fluid behaviour across the range of shear rates to which the coefficients were fitted. There are a number of other models that better describe the entire flow behaviour of shear-dependent fluids, but they do so at the expense of simplicity, so the power law is still used to describe fluid behaviour, permit mathematical predictions, and correlate experimental data.

Power-law fluids can be subdivided into three different types of fluids based on the value of their flow behaviour index:

n Type of fluid
<1 Pseudoplastic
1 Newtonian fluid
>1 Dilatant (less common)

Pseudoplastic fluids[edit]

Pseudoplastic, or shear-thinning are those fluids whose behaviour is time independent and which have a lower apparent viscosity at higher shear rates, and are usually solutions of large, polymeric molecules in a solvent with smaller molecules. It is generally supposed that the large molecular chains tumble at random and affect large volumes of fluid under low shear, but that they gradually align themselves in the direction of increasing shear and produce less resistance.

A common household example of a strongly shear-thinning fluid is styling gel, which is primarily composed of water and a fixative such as a vinyl acetate/vinylpyrrolidone copolymer (PVP/PA). If one were to hold a sample of hair gel in one hand and a sample of corn syruporglycerine in the other, they would find that the hair gel is much harder to pour off the fingers (a low shear application), but that it produces much less resistance when rubbed between the fingers (a high shear application).[3]

This type of behavior is widely encountered in solutions or suspensions. In these cases, large molecules or fine particles form loosely bounded aggregates or alignment groupings that are stable and reproducible at any given shear rate. But these fluids rapidly and reversibly break down or reform with an increase or decrease in shear rate. Pseudo plastic fluids show this behavior over a wide range of shear rates; however often approach a limiting Newtonian behavior at very low and very high rates of shear. These Newtonian regions are characterized by the viscosities and respectively.

Newtonian fluids[edit]

ANewtonian fluid is a power-law fluid with a behaviour index of 1, where the shear stress is directly proportional to the shear rate:

These fluids have a constant viscosity, μ, across all shear rates and include many of the most common fluids, such as water, most aqueous solutions, oils, corn syrup, glycerine, air and other gases.

While this holds true for relatively low shear rates, at high rates most oils in reality also behave in a non-Newtonian fashion and thin. Typical examples include oil films in automotive engine shell bearings and to a lesser extent in geartooth contacts.

Dilatant fluids[edit]

Dilatant, or shear-thickening fluids increase in apparent viscosity at higher shear rates.

They are in common use in viscous couplings in automobiles. When both ends of the coupling are spinning at the same rotational speed, the viscosity of the dilatant fluid is minimal, but if the ends of the coupling differ in speed, the coupling fluid becomes very viscous. They are used to prevent all of the torque from going to one wheel when the traction on that wheel drops, e.g. when one wheel is on ice. The viscous coupling between the two driven wheels ensures that both wheels turn at the same rate, providing torque to the wheel that is not slipping. Viscous couplings are also used to keep the front axle and the rear axle spinning at the same rate in four-wheel drive passenger automobiles.

Dilatant fluids are rarely encountered in everyday situations. One common example is an uncooked paste of cornstarch and water, sometimes known as oobleck. Under high shear rates, the water is squeezed out from between the starch molecules, which are able to interact more strongly, enormously increasing the viscosity.

While not strictly a dilatant fluid, Silly Putty (viscoelastic fluid) is an example of a material that shares these viscosity characteristics.

Velocity profile in a circular pipe[edit]

Just like a Newtonian fluid in a circular pipe gives a quadratic velocity profile (see Hagen–Poiseuille equation), a power-law fluid will result in a power-law velocity profile,

where u(r) is the (radially) local axial velocity, dp/dz is the pressure gradient along the pipe, and R is the pipe radius.

See also[edit]

References[edit]

  1. ^ e.g. G. W. Scott Blair et al., J. Phys. Chem., (1939) 43 (7) 853–864. Also the de Waele-Ostwald law, e.g Markus Reiner et al., Kolloid Zeitschrift (1933) 65 (1) 44-62
  • ^ Ostwald called it the de Waele-Ostwald equation: Kolloid Zeitschrift (1929) 47 (2) 176-187
  • ^ Saramito, Pierre (2016). Complex fluids: Modeling and Algorithms (PDF). Cham, Switzerland: Springer International Publishing Switzerland. p. 65. ISBN 978-3-319-44362-1.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Power-law_fluid&oldid=1233259645"

    Category: 
    Non-Newtonian fluids
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 8 July 2024, at 04:13 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki