Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Use and end-of-life disposal  





2 Industrial standards  





3 Significance of the industrial standards  



3.1  Density  





3.2  Electrical resistance  





3.3  Mechanical strength (compressive strength, Young's modulus, tensile strength)  





3.4  Thermal conductivity and thermal expansion  





3.5  Carbon reactivity and air permeability  





3.6  Grain stability  







4 References  














Prebaked consumable carbon anode







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Prebaked consumable carbon anodes are a specific type of anode designed for aluminium smelting using the Hall-Héroult process.

Use and end-of-life disposal

[edit]

During the smelting process, these anodes are suspended within the electrolysis cell(s) containing the aluminium oxideoraluminium fluoride. The process consumes the anode at a rate of roughly 450 kg of anode per tonne of aluminium produced.[1]

"Spent" anodes have little industrial use and are generally discarded; however, anodes that have been used to process aluminium fluoride may contain some amount of hydrogen fluoride and require hazardous waste disposal procedures.[2] Efforts to find industrial use for spent anodes have led to proposals to use the anodes as a cost-effective alternative for coke in small-scale foundries that lack a ready supply of coke, and cannot afford modern electric furnaces.

Industrial standards

[edit]

The properties of the anode are largely set during the baking process and must be carefully controlled to ensure an acceptable output efficiency and reduce the amount of undesirable byproduct produced.[3] To that end, the aluminium smelting industry has settled on a range of acceptable values for commercial mass-produced anodes for the purpose of consistent, optimal performance.

Industrial Standards for Prebaked Carbon Anodes[4][5][6]
Property Standard Range
Baked apparent density ISO 12985-1 1.53-1.64 gcm-3
Electrical resistance ISO 11713 55-62 μΩ for pressed anodes
Compressive strength ISO 18515 40-48 MPa
Young's modulus RDC-144 3.5-5.5 GPa
Tensile strength ISO 12986-1 8-10 MPa for pressed anodes
Thermal conductivity ISO 12987 3.5-4.5W mK-1
Coefficient of thermal expansion RDC-158 3.5-4.5 x 10-6 K-1
Air permeability ISO 15906 0.5-1.5 nPm
Carboxy reactivity residue ISO 12988-1 84-96%
Air reactivity residue ISO 12989-1 0.05-0.3% per minute
Grain stability N/A 70-90%

Significance of the industrial standards

[edit]

Density

[edit]

Higher baking temperatures result in higher density anodes, which exhibit reduced permeability and therefore extend the operational life of the anode.[7] However, excessive density will result in thermal shock and fracturing of the anode upon first use in an electrolysis cell.[8]

Electrical resistance

[edit]

Efficient aluminium smelting requires low resistance on the part of the anode. Low resistance results in greater control over the electrolysis cell's voltage and reduces the energy loss associated with resistive heating.[9] However, anodes with low electrical resistance also exhibit increased thermal conductivity. Anodes that conduct too much heat will oxidize rapidly, reducing or eliminating their smelting efficiency, called "air burn" in industry parlance.[10]

[edit]

Anodes are subject to a variety of mechanical stresses during creation, transportation and use. Anodes must be resistant to compressive force, resistant to elastic stress,[11] and resistant to impact without becoming brittle.[12][13] The relationship between compressive strength and Young's modulus in prebaked anodes usually results in a compromise in the anode's resistance to compressive force and elastic stresses.[14]

Thermal conductivity and thermal expansion

[edit]

Low anode thermal conductivity results in "air burn", as noted in Electrical Resistance, above.[15][16]

Low thermal expansion coefficients are desirable to avoid thermal shock.[17][18]

Carbon reactivity and air permeability

[edit]

Anodes should be relatively impermeable to both carbon dioxide and air generally to reduce the opportunity for "carbon dioxide burn" and "air burn", both of which will reduce the anode's smelting efficiency.[19]

Grain stability

[edit]

High grain stability indicates high anode structural integrity, increasing the smelting efficiency of the anode. High Grain stability also minimizes particle degradation during anode fabrication.[20]

References

[edit]
  1. ^ "Aluminium for Future Generations – Anode Production". primary.world-aluminium.org. Retrieved 2015-10-29.
  • ^ Hocking, M.B. (1985). Modern Chemical Technology and Emission Control. Berlin: Springer-Verlag. p. 244. ISBN 9783642697753.
  • ^ Fisher, Keller and Manweiller (January 2009). "Anode plants for tomorrow's smelters: Key elements for the production of high quality anodes" (PDF). Aluminium International Today. Retrieved 28 October 2015.
  • ^ Marsh, H. and K. Fiorino. Carbon Anodes. in Fifth Australasian Aluminium Smelter Technology Workshop. 1995. University of New South Wales Kensington Campus, Sydney, Australia: L. J. Cullen Bookbinders
  • ^ Sadler, B.A. and B.J. Welch. Anode Consumption Mechanisms- A Practical Review of the Theory & Anode Property Considerations. in Seventh Australasian Aluminium Smelting Technology Conference & Workshops. 2001. Melbourne, Australia
  • ^ Barclay, R. Anode Fabrication, Properties & Performance. in 7th Australasian Aluminium Smelting Technology Conference & Workshops. 2001. Melbourne
  • ^ Sadler, B. Anode consumption and the ideal anode properties. in Fourth Australasian Aluminium Smelting Technology Workshop. 1992. Sydney, Australia
  • ^ Sadler, B.A. and B.J. Welch. Anode Consumption Mechanisms- A Practical Review of the Theory & Anode Property Considerations. in Seventh Australasian Aluminium Smelting Technology Conference & Workshops. 2001. Melbourne, Australia
  • ^ Sadler, B. Anode consumption and the ideal anode properties. in Fourth Australasian Aluminium Smelting Technology Workshop. 1992. Sydney, Australia
  • ^ Thyer, R., Anode coating is reducing air burn, in CSIRO research in materials processing and metal production. 2007, Commonwealth Scientific and Industrial Research Organisation: Melbourne. p. 1-2
  • ^ Sadler, B.A. and B.J. Welch. Anode Consumption Mechanisms- A Practical Review of the Theory & Anode Property Considerations. in Seventh Australasian Aluminium Smelting Technology Conference & Workshops. 2001. Melbourne, Australia
  • ^ Tomsett, A. Anode Baking Furnace Operation. in 7th Australasian Aluminium Smelting Technology Conference & Workshops. 2001. Melbourne, Australia
  • ^ Barclay, R. Anode Fabrication, Properties & Performance. in 7th Australasian Aluminium Smelting Technology Conference & Workshops. 2001. Melbourne
  • ^ Barclay, R. Anode Fabrication, Properties & Performance. in 7th Australasian Aluminium Smelting Technology Conference & Workshops. 2001. Melbourne
  • ^ Sadler, B.A. and B.J. Welch. Anode Consumption Mechanisms- A Practical Review of the Theory & Anode Property Considerations. in Seventh Australasian Aluminium Smelting Technology Conference & Workshops. 2001. Melbourne, Australia
  • ^ Kuang, Z., J. Thonstad, and M. Sørlie, Effects of Additives on the Electrolytic Consumption of Carbon Anodes in Aluminium Electrolysis. Carbon, 1995. 33(10): p. 1479-1484
  • ^ Sadler, B.A. and B.J. Welch. Anode Consumption Mechanisms- A Practical Review of the Theory & Anode Property Considerations. in Seventh Australasian Aluminium Smelting Technology Conference & Workshops. 2001. Melbourne, Australia
  • ^ Barclay, R. Anode Fabrication, Properties & Performance. in 7th Australasian Aluminium Smelting Technology Conference & Workshops. 2001. Melbourne
  • ^ Marsh, H. and K. Fiorino. Carbon Anodes. in Fifth Australasian Aluminium Smelter Technology Workshop. 1995. University of New South Wales Kensington Campus, Sydney, Australia: L. J. Cullen Bookbinders
  • ^ Barclay, R. Anode Fabrication, Properties & Performance. in 7th Australasian Aluminium Smelting Technology Conference & Workshops. 2001. Melbourne

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Prebaked_consumable_carbon_anode&oldid=1098937867"

    Category: 
    Aluminium
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 18 July 2022, at 06:09 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki