Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Physical interpretation  





2 Weather and climate relevance  





3 In acoustics  





4 See also  





5 References  





6 External links  














Pressure gradient






Català
Español
فارسی
Français
Italiano
Nederlands

Polski
Português
Română
Русский
Simple English
Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inhydrodynamics and hydrostatics, the pressure gradient (typically of air but more generally of any fluid) is a physical quantity that describes in which direction and at what rate the pressure increases the most rapidly around a particular location. The pressure gradient is a dimensional quantity expressed in units of pascals per metre (Pa/m). Mathematically, it is the gradient of pressure as a function of position. The gradient of pressure in hydrostatics is equal to the body force density (generalised Stevin's Law).

Inpetroleum geology and the petrochemical sciences pertaining to oil wells, and more specifically within hydrostatics, pressure gradients refer to the gradient of vertical pressure in a column of fluid within a wellbore and are generally expressed in pounds per square inch per foot (psi/ft). This column of fluid is subject to the compound pressure gradient of the overlying fluids. The path and geometry of the column is totally irrelevant; only the vertical depth of the column has any relevance to the vertical pressure of any point within its column and the pressure gradient for any given true vertical depth.

Physical interpretation[edit]

The concept of a pressure gradient is a local characterisation of the air (more generally of the fluid under investigation). The pressure gradient is defined only at these spatial scales at which pressure (more generally fluid dynamics) itself is defined.

Within planetary atmospheres (including the Earth's), the pressure gradient is a vector pointing roughly downwards, because the pressure changes most rapidly vertically, increasing downwards (see vertical pressure variation). The value of the strength (ornorm) of the pressure gradient in the troposphere is typically of the order of 9 Pa/m (or 90 hPa/km).

The pressure gradient often has a small but critical horizontal component, which is largely responsible for wind circulation in the atmosphere. The horizontal pressure gradient is a two-dimensional vector resulting from the projection of the pressure gradient onto a local horizontal plane. Near the Earth's surface, this horizontal pressure gradient force is directed from higher toward lower pressure. Its particular orientation at any one time and place depends strongly on the weather situation. At mid-latitudes, the typical horizontal pressure gradient may take on values of the order of 10−2 Pa/m (or 10 Pa/km), although rather higher values occur within meteorological fronts.

Weather and climate relevance[edit]

Interpreting differences in air pressure between different locations is a fundamental component of many meteorological and climatological disciplines, including weather forecasting. As indicated above, the pressure gradient constitutes one of the main forces acting on the air to make it move as wind. Note that the pressure gradient force points from high towards low pressure zones. It is thus oriented in the opposite direction from the pressure gradient itself.

In acoustics[edit]

Inacoustics, the pressure gradient is proportional to the sound particle acceleration according to Euler's equation. Sound waves and shock waves can induce very large pressure gradients, but these are oscillatory, and often transitory disturbances.

See also[edit]

References[edit]

External links[edit]


Retrieved from "https://en.wikipedia.org/w/index.php?title=Pressure_gradient&oldid=1211109855"

Categories: 
Atmospheric dynamics
Pressure
Spatial gradient
Hidden categories: 
Articles with short description
Short description is different from Wikidata
Articles lacking in-text citations from December 2022
All articles lacking in-text citations
Articles with GND identifiers
Articles with EMU identifiers
 



This page was last edited on 29 February 2024, at 22:30 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki