Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Examples  





2 Properties  





3 References  














Product of rings






Français
Nederlands

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematics, a product of ringsordirect product of rings is a ring that is formed by the Cartesian product of the underlying sets of several rings (possibly an infinity), equipped with componentwise operations. It is a direct product in the category of rings.

Since direct products are defined up toanisomorphism, one says colloquially that a ring is the product of some rings if it is isomorphic to the direct product of these rings. For example, the Chinese remainder theorem may be stated as: if m and n are coprime integers, the quotient ring is the product of and

Examples[edit]

An important example is Z/nZ, the ring of integers modulo n. If n is written as a product of prime powers (see Fundamental theorem of arithmetic),

where the pi are distinct primes, then Z/nZ is naturally isomorphic to the product

This follows from the Chinese remainder theorem.

Properties[edit]

IfR = ΠiI Ri is a product of rings, then for every iinI we have a surjective ring homomorphism pi : RRi which projects the product on the i th coordinate. The product R together with the projections pi has the following universal property:

ifS is any ring and fi : SRi is a ring homomorphism for every iinI, then there exists precisely one ring homomorphism f : SR such that pi ∘ f = fi for every iinI.

This shows that the product of rings is an instance of products in the sense of category theory.

When I is finite, the underlying additive group of ΠiI Ri coincides with the direct sum of the additive groups of the Ri. In this case, some authors call R the "direct sum of the rings Ri" and write iI Ri, but this is incorrect from the point of view of category theory, since it is usually not a coproduct in the category of rings (with identity): for example, when two or more of the Ri are non-trivial, the inclusion map RiR fails to map 1 to 1 and hence is not a ring homomorphism.

(A finite coproduct in the categoryofcommutative algebras over a commutative ring is a tensor product of algebras. A coproduct in the category of algebras is a free product of algebras.)

Direct products are commutative and associative up to natural isomorphism, meaning that it doesn't matter in which order one forms the direct product.

IfAi is an idealofRi for each iinI, then A = ΠiI Ai is an ideal of R. If I is finite, then the converse is true, i.e., every ideal of R is of this form. However, if I is infinite and the rings Ri are non-trivial, then the converse is false: the set of elements with all but finitely many nonzero coordinates forms an ideal which is not a direct product of ideals of the Ri. The ideal A is a prime idealinR if all but one of the Ai are equal to Ri and the remaining Ai is a prime ideal in Ri. However, the converse is not true when I is infinite. For example, the direct sum of the Ri form an ideal not contained in any such A, but the axiom of choice gives that it is contained in some maximal ideal which is a fortiori prime.

An element xinR is a unit if and only if all of its components are units, i.e., if and only if pi (x) is a unit in Ri for every iinI. The group of unitsofR is the product of the groups of units of the Ri.

A product of two or more non-trivial rings always has nonzero zero divisors: if x is an element of the product whose coordinates are all zero except pi (x) and y is an element of the product with all coordinates zero except pj (y) where i ≠ j, then xy = 0 in the product ring.

References[edit]


Retrieved from "https://en.wikipedia.org/w/index.php?title=Product_of_rings&oldid=1141595925"

Categories: 
Ring theory
Operations on structures
Hidden categories: 
Articles with short description
Short description matches Wikidata
 



This page was last edited on 25 February 2023, at 21:21 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki