Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Properties  





2 f-vectors  





3 Double products or duoprisms  





4 Triple products  





5 References  














Proprism







 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The {3}×{3} duoprism is a proprism as the product of two orthogonal triangles, having 9 squares between pairs of edges of 2 sets of 3 triangles, and 18 vertices, as seen in this skew orthogonal projection.

Ingeometry of 4 dimensions or higher, a proprism is a polytope resulting from the Cartesian product of two or more polytopes, each of two dimensions or higher. The term was coined by John Horton Conway for product prism. The dimension of the space of a proprism equals the sum of the dimensions of all its product elements. Proprisms are often seen as k-face elements of uniform polytopes.[1]

Properties

[edit]

The number of vertices in a proprism is equal to the product of the number of vertices in all the polytopes in the product.

The minimum symmetry order of a proprism is the product of the symmetry orders of all the polytopes. A higher symmetry order is possible if polytopes in the product are identical.

A proprism is convex if all its product polytopes are convex.

f-vectors

[edit]

Anf-vector is a number of k-face elements in a polytope from k=0 (points) to k=n-1 (facets). An extended f-vector can also include k=-1 (nullitope), or k=n (body). Prism products include the body element. (The dual to prism products includes the nullitope, while pyramid products include both.)

The f-vector of prism product, A×B, can be computed as (fA,1)*(fB,1), like polynomial multiplication polynomial coefficients.

For example for product of a triangle, f=(3,3), and dion, f=(2) makes a triangular prism with 6 vertices, 9 edges, and 5 faces:

fA(x) = (3,3,1) = 3 + 3x + x2 (triangle)
fB(x) = (2,1) = 2 + x (dion)
fA∨B(x) = fA(x) * fB(x)
= (3 + 3x + x2) * (2 + x)
= 6 + 9x + 5x2 + x3
= (6,9,5,1)

Hypercube f-vectors can be computed as Cartesian products of n dions, { }n. Each { } has f=(2), extended to f=(2,1).

For example, an 8-cube will have extended f-vector power product: f=(2,1)8 = (4,4,1)4 = (16,32,24,8,1)2 = (256,1024,1792,1792,1120,448,112,16,1). If equal lengths, this doubling represents { }8, a square tetra-prism {4}4, a tesseract duo-prism {4,3,3}2, and regular 8-cube {4,3,3,3,3,3,3}.

Double products or duoprisms

[edit]

In geometry of 4 dimensions or higher, duoprism is a polytope resulting from the Cartesian product of two polytopes, each of two dimensions or higher. The Cartesian product of an a-polytope, a b-polytope is an (a+b)-polytope, where a and b are 2-polytopes (polygon) or higher.

Most commonly this refers to the product of two polygons in 4-dimensions. In the context of a product of polygons, Henry P. Manning's 1910 work explaining the fourth dimension called these double prisms.[2]

The Cartesian product of two polygons is the set of points:

where P1 and P2 are the sets of the points contained in the respective polygons.

The smallest is a 3-3 duoprism, made as the product of 2 triangles. If the triangles are regular it can be written as a product of Schläfli symbols, {3} × {3}, and is composed of 9 vertices.

The tesseract, can be constructed as the duoprism {4} × {4}, the product of two equal-size orthogonal squares, composed of 16 vertices. The 5-cube can be constructed as a duoprism {4} × {4,3}, the product of a square and cube, while the 6-cube can be constructed as the product of two cubes, {4,3} × {4,3}.

Triple products

[edit]
The prism {3} × {3} × {3} can be seen in orthogonal projection within a regular enneagon.

In geometry of 6 dimensions or higher, a triple product is a polytope resulting from the Cartesian product of three polytopes, each of two dimensions or higher. The Cartesian product of an a-polytope, a b-polytope, and a c-polytope is an (a + b + c)-polytope, where a, b and c are 2-polytopes (polygon) or higher.

The lowest-dimensional forms are 6-polytopes being the Cartesian product of three polygons. The smallest can be written as {3} × {3} × {3} in Schläfli symbols if they are regular, and contains 27 vertices. This is the product of three equilateral triangles and is a uniform polytope. The f-vectors can be computed by (3,3,1)3 = (27,81,108,81,36,9,1).

The 6-cube, can be constructed as a triple product {4} × {4} × {4}. The f-vectors can be computed by (4,4,1)3 = (64,192,240,160,60,12,1).

References

[edit]
  1. ^ John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 26, p. 391 "proprism")
  • ^ The Fourth Dimension Simply Explained, Henry P. Manning, Munn & Company, 1910, New York. Available from the University of Virginia library. Also accessible online: The Fourth Dimension Simply Explained—contains a description of duoprisms (double prisms) and duocylinders (double cylinders). Googlebook

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Proprism&oldid=1154418769"

    Categories: 
    Multi-dimensional geometry
    Polytopes
     



    This page was last edited on 12 May 2023, at 10:21 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki