Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Production  



1.1  Hydrochlorination route  





1.2  Oxidation of propylene  







2 Reactions  





3 Uses  



3.1  Niche uses  



3.1.1  Fumigant  





3.1.2  Microscopy  





3.1.3  Munition  









4 Safety  





5 Natural occurrence  





6 References  





7 Cited sources  





8 External links  














Propylene oxide






تۆرکجه
Čeština
Deutsch
Ελληνικά
Euskara
فارسی
Français
Italiano
Latviešu
Magyar
Nederlands

Română
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Svenska
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Propylene oxide
Structural formula
Ball-and-stick model of the propylene oxide molecule
Names
Preferred IUPAC name

(2R)-2-Methyloxirane
(2S)-2-Methyloxirane

Other names

Propylene oxide
Epoxypropane
Propylene epoxide
1,2-Propylene oxide
Methyl oxirane
1,2-Epoxypropane
Propene oxide
Methyl ethylene oxide
Methylethylene oxide

Identifiers

CAS Number

3D model (JSmol)

ChEBI
ChemSpider
ECHA InfoCard 100.000.800 Edit this at Wikidata
EC Number
  • 200-879-2
KEGG

PubChem CID

UNII

CompTox Dashboard (EPA)

  • InChI=1S/C3H6O/c1-3-2-4-3/h3H,2H2,1H3

    Key: GOOHAUXETOMSMM-UHFFFAOYSA-N

  • CC1CO1

Properties

Chemical formula

C3H6O
Molar mass 58.080 g·mol−1
Appearance Colourless liquid
Odor benzene-like[1]
Density 0.859 g/cm3[2]
Melting point −111.9 °C (−169.4 °F; 161.2 K)[2]
Boiling point 35 °C (95 °F; 308 K)[2]

Solubility in water

41% (20 °C)[1]
Vapor pressure 445 mmHg (20 °C)[1]

Magnetic susceptibility (χ)

−4.25×10−5 cm3/mol[3]

Refractive index (nD)

1.3660[2]
Thermochemistry

Heat capacity (C)

120.4 J·(K·mol)−1

Std molar
entropy
(S298)

196.5 J·(K·mol)−1

Std enthalpy of
formation
fH298)

−123.0 kJ·mol−1[4]
Hazards
Occupational safety and health (OHS/OSH):

Main hazards

Extremely flammable[5][6]
GHS labelling:

Pictograms

GHS02: FlammableGHS08: Health hazardGHS07: Exclamation mark

Signal word

Danger
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 4: Will rapidly or completely vaporize at normal atmospheric pressure and temperature, or is readily dispersed in air and will burn readily. Flash point below 23 °C (73 °F). E.g. propaneInstability 2: Undergoes violent chemical change at elevated temperatures and pressures, reacts violently with water, or may form explosive mixtures with water. E.g. white phosphorusSpecial hazards (white): no code
3
4
2
Flash point −37 °C (−35 °F; 236 K)

Autoignition
temperature

747 °C (1,377 °F; 1,020 K)
Explosive limits 2.3–36%[1]
Lethal dose or concentration (LD, LC):

LD50 (median dose)

660 mg/kg (guinea pig, oral)
380 mg/kg (rat, oral)
440 mg/kg (mouse, oral)
1140 mg/kg (rat, oral)
690 mg/kg (guinea pig, oral)[7]

LC50 (median concentration)

1740 ppm (mouse, 4 h)
4000 ppm (rat, 4 h)[7]

LCLo (lowest published)

2005 ppm (dog, 4 h)
4000 ppm (guinea pig, 4 h)[7]
NIOSH (US health exposure limits):

PEL (Permissible)

TWA 100 ppm (240 mg/m3)[1]

REL (Recommended)

Ca[1]

IDLH (Immediate danger)

Ca [400 ppm][1]

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

☒N verify (what is checkY☒N ?)

Infobox references

Propylene oxide is an acutely toxic and carcinogenic organic compound with the molecular formula C3H6O. This colourless volatile liquid with an odour similar to ether, is produced on a large scale industrially. Its major application is its use for the production of polyether polyols for use in making polyurethane plastics. It is a chiral epoxide, although it is commonly used as a racemic mixture.

This compound is sometimes called 1,2-propylene oxide to distinguish it from its isomer 1,3-propylene oxide, better known as oxetane.

Production[edit]

Industrial production of propylene oxide starts from propylene.[8] Two general approaches are employed, one involving hydrochlorination and the other involving oxidation.[9] In 2005, about half of the world production was through chlorohydrin technology and one half via oxidation routes. The latter approach is growing in importance.[10]

Hydrochlorination route[edit]

The traditional route proceeds via the conversion of propenetopropylene chlorohydrin according to the following simplified scheme:

The mixture of 1-chloro-2-propanol and 2-chloro-1-propanol is then dehydrochlorinated. For example:

Lime (calcium hydroxide) is often used to absorb the HCl.

Oxidation of propylene[edit]

The other general route to propylene oxide involves oxidation of propylene with an organic peroxide. The reaction follows this stoichiometry:

CH3CH=CH2 + RO2H → CH3CHCH2O + ROH

The process is practiced with four hydroperoxides:[10]

In principle, this process produces only water as a side product. In practice, some ring-opened derivatives of PO are generated.[12]

Propylene oxide is chiral building block that is commercially available in either enantiomeric form ((R)-(+) and (S)-(–)). The separated enantiomers can be obtained through a Co(III)-salen-catalyzed hydrolytic kinetic resolution of the racemic material.[13]

Reactions[edit]

Like other epoxides, PO undergoes ring-opening reactions. With water, propylene glycol is produced. With alcohols, reactions, called hydroxylpropylation, analogous to ethoxylation occur. Grignard reagents add to propylene oxide to give secondary alcohols.

Some other reactions of propylene oxide include:[14]

Uses[edit]

Between 60 and 70% of all propylene oxide is converted to polyether polyols by the process called alkoxylation.[15] These polyols are building blocks in the production of polyurethane plastics.[16] About 20% of propylene oxide is hydrolyzed into propylene glycol, via a process which is accelerated by acid or base catalysis. Other major products are polypropylene glycol, propylene glycol ethers, and propylene carbonate.

Niche uses[edit]

Fumigant[edit]

The United States Food and Drug Administration has approved the use of propylene oxide to pasteurize raw almonds beginning on September 1, 2007, in response to two incidents of contamination by Salmonella in commercial orchards, one incident occurring in Canada and one in the United States.[17][18] Pistachio nuts can also be subjected to propylene oxide to control Salmonella.

Microscopy[edit]

Propylene oxide is commonly used in the preparation of biological samples for electron microscopy, to remove residual ethanol previously used for dehydration. In a typical procedure, the sample is first immersed in a mixture of equal volumes of ethanol and propylene oxide for 5 minutes, and then four times in pure oxide, 10 minutes each.

Munition[edit]

Propylene oxide is sometimes used in thermobaric munitions as the fuel in fuel–air explosives. In addition to the explosive damage from the blast wave, unexploded propylene oxide can cause additional effects from direct toxicity.[19]

Safety[edit]

Propylene oxide is both acutely toxic and carcinogenic. Acute exposure causes respiratory tract irritation, eventually leading to death.[20] Signs of toxicity after acute exposure include salivation, lacrimation, nasal discharge, gasping, lethargy and hypoactivity, weakness, and incoordination. Propylene oxide is also neurotoxic in rats, and presumably in humans [21]

Propylene oxide alkylates DNA.[22] As such, it is known animal carcinogen[23] and a potential human carcinogen, and is included into the List of IARC Group 2B carcinogens.[24]

Natural occurrence[edit]

In 2016 it was reported that propylene oxide was detected in Sagittarius B2, a cloud of gas in the Milky Way weighing three million solar masses. It is the first chiral molecule to be detected in space, albeit with no enantiomeric excess.[25]

References[edit]

  1. ^ a b c d e f g NIOSH Pocket Guide to Chemical Hazards. "#0538". National Institute for Occupational Safety and Health (NIOSH).
  • ^ a b c d Haynes 2011, p. 3.384
  • ^ Haynes 2011, p. 3.577
  • ^ Haynes 2011, p. 5.24
  • ^ "NFPA DIAMOND". www.otrain.com.
  • ^ GOV, NOAA Office of Response and Restoration, US. "PROPYLENE OXIDE | CAMEO Chemicals | NOAA". cameochemicals.noaa.gov.
  • ^ a b c "Propylene oxide". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  • ^ Nijhuis TA, Makkee M, Moulijn JA, Weckhuysen BM (2006). "The Production of Propene Oxide: Catalytic Processes and Recent Developments". Industrial & Engineering Chemistry Research. 45 (10): 3447–3459. doi:10.1021/ie0513090. hdl:1874/20149.
  • ^ Kahlich D, Wiechern U, Lindner J (2002). "Propylene Oxide". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a22_239. ISBN 978-3527306732.
  • ^ a b Nijhuis TA, Makkee M, Moulijn JA, Weckhuysen BM (2006). "The Production of Propene Oxide: Catalytic Processes and Recent Developments". Industrial & Engineering Chemistry Research. 45 (10): 3447. doi:10.1021/ie0513090. hdl:1874/20149.
  • ^ "Summary of Sumitomo process from Nexant Reports". Archived from the original on 2006-01-17. Retrieved 2007-09-18.
  • ^ Russo V, Tesser R, Santacesaria E, Di Serio M (2013). "Chemical and Technical Aspects of Propene Oxide Production via Hydrogen Peroxide (HPPO Process)". Industrial & Engineering Chemistry Research. 52 (3): 1168–1178. doi:10.1021/ie3023862.
  • ^ Schaus, Scott E.; Brandes, Bridget D.; Larrow, Jay F.; Tokunaga, Makoto; Hansen, Karl B.; Gould, Alexandra E.; Furrow, Michael E.; Jacobsen, Eric N. (2002-02-01). "Highly Selective Hydrolytic Kinetic Resolution of Terminal Epoxides Catalyzed by Chiral (salen)Co III Complexes. Practical Synthesis of Enantioenriched Terminal Epoxides and 1,2-Diols". Journal of the American Chemical Society. 124 (7): 1307–1315. doi:10.1021/ja016737l. ISSN 0002-7863.
  • ^ Heilbron I, ed. (1953). Dictionary of Organic Compounds. Vol. 4. Oxford University Press. p. 249.
  • ^ Adam N, Avar G, Blankenheim H, Friedrichs W, Giersig M, Weigang E, et al. (2005). "Polyurethanes". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a21_665.pub2. ISBN 978-3527306732.
  • ^ "Usage of proplyene oxide". Dow Chemical. Archived from the original on 2007-09-15. Retrieved 2007-09-10.
  • ^ "Guidance for Industry: Measures to Address the Risk for Contamination by Salmonella Species in Food Containing a Pistachio-Derived Product As An Ingredient; Draft Guidance". fda.gov. June 2009. Archived from the original on 2011-02-09.
  • ^ Agricultural Marketing Service, USDA (30 March 2007). "Almonds Grown in California; Outgoing Quality Control Requirements" (PDF). Federal Register. 72 (61): 15, 021–15, 036. Archived from the original (PDF) on 28 September 2007. Retrieved 2007-08-22.
  • ^ "Backgrounder on Russian Fuel Air Explosives ("Vacuum Bombs") | Human Rights Watch". Hrw.org. February 1, 2000. Archived from the original on February 10, 2013. Retrieved April 23, 2013.
  • ^ National Research Council (US) Committee on Acute Exposure Guideline Levels (2010). Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 9. National Academies Press.
  • ^ Ohnishi A, Murai Y (February 1993). "Polyneuropathy due to ethylene oxide, propylene oxide, and butylene oxide". Environmental Research. 60 (2): 242–247. doi:10.1006/enrs.1993.1032. PMID 8472653.
  • ^ Lawley PD, Jarman M (February 1972). "Alkylation by propylene oxide of deoxyribonucleic acid, adenine, guanosine and deoxyguanylic acid". The Biochemical Journal. 126 (4): 893–900. doi:10.1042/bj1260893. PMC 1178497. PMID 5073240.
  • ^ Ringo DL, Brennan EF, Cota-Robles EH (September 1982). "Epoxy resins are mutagenic: implications for electron microscopists". Journal of Ultrastructure Research. 80 (3): 280–287. doi:10.1016/s0022-5320(82)80041-5. PMID 6752439.
  • ^ Grana R, Benowitz N, Glantz SA (May 2014). "E-cigarettes: a scientific review". Circulation. 129 (19): 1972–1986. doi:10.1161/circulationaha.114.007667. PMC 4018182. PMID 24821826.
  • ^ "Scientists just detected this life-forming molecule in interstellar space for the first time". Science Alert. 2016-06-15.
  • Cited sources[edit]

    External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Propylene_oxide&oldid=1214552664"

    Categories: 
    Epoxides
    IARC Group 2B carcinogens
    Commodity chemicals
    Hidden categories: 
    Articles without InChI source
    Articles with changed EBI identifier
    ECHA InfoCard ID from Wikidata
    Articles with changed KEGG identifier
    Chembox having GHS data
    Articles containing unverified chemical infoboxes
    Chembox image size set
    Articles with short description
    Short description matches Wikidata
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
     



    This page was last edited on 19 March 2024, at 17:19 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki