Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Physiology  





2 Characteristics  



2.1  Rate  





2.2  Rhythm  





2.3  Volume  



2.3.1  Hypokinetic pulse  





2.3.2  Hyperkinetic pulse  







2.4  Force  





2.5  Tension  





2.6  Form  





2.7  Equality  





2.8  Condition of arterial wall  





2.9  Radio-femoral delay  







3 Patterns  





4 Common palpable sites  



4.1  Upper limb  





4.2  Lower limb  





4.3  Head and neck  





4.4  Torso  







5 History  





6 See also  





7 References  





8 External links  














Pulse






العربية
Asturianu
Авар
Azərbaycanca

Беларуская
Беларуская (тарашкевіца)
Български
Català
Čeština
Cymraeg
Dansk
Deutsch
Ελληνικά
Español
Esperanto
Euskara
فارسی
Français
Gaeilge
Gàidhlig
Galego

Հայերեն
ि
Hrvatski
Bahasa Indonesia
Íslenska
Italiano
עברית


Қазақша
Кыргызча
Latina
Latviešu
Lëtzebuergesch
Lietuvių
Magyar
Македонски

Bahasa Melayu
Nederlands


Norsk bokmål
Norsk nynorsk

پښتو
Polski
Português
Română
Русский
Sicilianu
Simple English
سنڌي
Slovenčina
کوردی
Српски / srpski
Srpskohrvatski / српскохрватски
Suomi
Svenska
ி
Татарча / tatarça

Türkçe
Українська
Tiếng Vit
Walon



 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Pulse
Diagram of the rise and lower of blood from a pulse.
OrganismsAnimalia*
Biological systemCirculatory system
ActionInvoluntary
MethodHeart pumps blood using reciprocating method causing inconstant blood flow throughout the circulatory system that can be recognized. (See Cardiac cycle)
Frequency60–100 per minute (humans)
Duration0.6–1 second (humans)
Animalia with the exception of Porifera, Cnidaria, Ctenophora, Platyhelminthes, Bryozoan, Amphioxus.

Inmedicine, a pulse represents the tactile arterial palpation of the cardiac cycle (heartbeat) by fingertips. The pulse may be palpated in any place that allows an artery to be compressed near the surface of the body, such as at the neck (carotid artery), wrist (radial arteryorulnar artery), at the groin (femoral artery), behind the knee (popliteal artery), near the ankle joint (posterior tibial artery), and on foot (dorsalis pedis artery). The radial pulse is commonly measured using three fingers. This has a reason: the finger closest to the heart is used to occlude the pulse pressure, the middle finger is used get a crude estimate of the blood pressure, and the finger most distal to the heart (usually the ring finger) is used to nullify the effect of the ulnar pulse as the two arteries are connected via the palmar arches (superficial and deep). The study of the pulse is known as sphygmology.

Physiology[edit]

Pulse evaluation at the radial artery.
Recommended points to evaluate pulse

Claudius Galen was perhaps the first physiologist to describe the pulse.[1] The pulse is an expedient tactile method of determination of systolic blood pressure to a trained observer. Diastolic blood pressure is non-palpable and unobservable by tactile methods, occurring between heartbeats.

Pressure waves generated by the heart in systole move the arterial walls. Forward movement of blood occurs when the boundaries are pliable and compliant. These properties form enough to create a palpable pressure wave.

Pulse velocity, pulse deficits and much more physiologic data are readily and simplistically visualized by the use of one or more arterial catheters connected to a transducer and oscilloscope. This invasive technique has been commonly used in intensive care since the 1970s.

The pulse may be further indirectly observed under light absorbances of varying wavelengths with assigned and inexpensively reproduced mathematical ratios. Applied capture of variances of light signal from the blood component hemoglobin under oxygenated vs. deoxygenated conditions allows the technology of pulse oximetry.

Characteristics[edit]

Rate[edit]

The rate of the pulse can be observed and measured on the outside of an artery by tactile or visual means. It is recorded as arterial beats per minute or BPM. Although the pulse and heart beat are related, they are not the same. For example, there is a delay between the onset of the heart beat and the onset of the pulse, known as the pulse transit time, which varies by site. Similarly measurements of heart rate variability and pulse rate variability differ.[2]

In healthy people, the pulse rate is close to the heart rate, as measured by ECG.[2] Measuring the pulse rate is therefore a convenient way to estimate the heart rate.[3] Pulse deficit is a condition in which a person has a difference between their pulse rate and heart rate. It can be observed by simultaneous palpation at the radial artery and auscultation using a stethoscope at the PMI, near the heart apex, for example. Typically, in people with pulse deficit, heart beats do not result in pulsations at the periphery, meaning the pulse rate is lower than the heart rate. Pulse deficit has been found to be significant in the context of premature ventricular contraction[citation needed] and atrial fibrillation.[4]

Rhythm[edit]

A normal pulse is regular in rhythm and force. An irregular pulse may be due to sinus arrhythmia, ectopic beats, atrial fibrillation, paroxysmal atrial tachycardia, atrial flutter, partial heart block etc. Intermittent dropping out of beats at pulse is called "intermittent pulse". Examples of regular intermittent (regularly irregular) pulse include pulsus bigeminus, second-degree atrioventricular block. An example of irregular intermittent (irregularly irregular) pulse is atrial fibrillation.

Volume[edit]

The degree of expansion displayed by artery during diastolic and systolic state is called volume. It is also known as amplitude, expansion or size of pulse.

Hypokinetic pulse[edit]

A weak pulse signifies narrow pulse pressure. It may be due to low cardiac output (as seen in shock, congestive cardiac failure), hypovolemia, valvular heart disease (such as aortic outflow tract obstruction, mitral stenosis, aortic arch syndrome) etc.

Hyperkinetic pulse[edit]

A bounding pulse signifies high pulse pressure. It may be due to low peripheral resistance (as seen in fever, anemia, thyrotoxicosis, hyperkinetic heart syndrome [de], A-V fistula, Paget's disease, beriberi, liver cirrhosis), increased cardiac output, increased stroke volume (as seen in anxiety, exercise, complete heart block, aortic regurgitation), decreased distensibility of arterial system (as seen in atherosclerosis, hypertension and coarctation of aorta).

The strength of the pulse can also be reported:[5][6]

Force[edit]

Also known as compressibility of pulse. It is a rough measure of systolic blood pressure.

Tension[edit]

It corresponds to diastolic blood pressure. A low tension pulse (pulsus mollis), the vessel is soft or impalpable between beats. In high tension pulse (pulsus durus), vessels feel rigid even between pulse beats.

Form[edit]

A form or contour of a pulse is palpatory estimation of arteriogram. A quickly rising and quickly falling pulse (pulsus celer) is seen in aortic regurgitation. A slow rising and slowly falling pulse (pulsus tardus) is seen in aortic stenosis.

Equality[edit]

Comparing pulses and different places gives valuable clinical information.

A discrepant or unequal pulse between left and right radial artery is observed in anomalous or aberrant course of artery, coarctation of aorta, aortitis, dissecting aneurysm, peripheral embolism etc. An unequal pulse between upper and lower extremities is seen in coarctation to aorta, aortitis, block at bifurcation of aorta, dissection of aorta, iatrogenic trauma and arteriosclerotic obstruction.

Condition of arterial wall[edit]

A normal artery is not palpable after flattening by digital pressure. A thick radial artery which is palpable 7.5–10 cm up the forearm is suggestive of arteriosclerosis.

Radio-femoral delay[edit]

In coarctation of aorta, femoral pulse may be significantly delayed as compared to radial pulse (unless there is coexisting aortic regurgitation). The delay can also be observed in supravalvar aortic stenosis.

Patterns[edit]

Several pulse patterns can be of clinical significance. These include:

Common palpable sites[edit]

Sites can be divided into peripheral pulses and central pulses. Central pulses include the carotid, femoral, and brachial pulses.[12]

Upper limb[edit]

Front of right upper extremity

Lower limb[edit]

Head and neck[edit]

Arteries of the neck.

Although the pulse can be felt in multiple places in the head, people should not normally hear their heartbeats within the head. This is called pulsatile tinnitus, and it can indicate several medical disorders.

Torso[edit]

History[edit]

Pulse rate was first measured by ancient Greek physicians and scientists. The first person to measure the heart beat was Herophilus of Alexandria, Egypt (c. 335–280 BC) who designed a water clock to time the pulse.[13] Rumi has mentioned in a poem that "The wise physician measured the patient's pulse and became aware of his condition." It shows the practice was common during Rumi's era and geography.[14] The first person to accurately measure the pulse rate was Santorio Santorii who invented the pulsilogium, a form of pendulum which was later studied by Galileo Galilei.[15] A century later another physician, de Lacroix, used the pulsilogium to test cardiac function.

See also[edit]

References[edit]

  1. ^ Temkin 165;BBC[a]
  • ^ a b Yuda, Emi; Yamamoto, Kento; Yoshida, Yutaka; Hayano, Junichiro (21 February 2020). "Differences in pulse rate variability with measurement site". Journal of Physiological Anthropology. 39: 4. doi:10.1186/s40101-020-0214-1. ISSN 1880-6791. PMC 7035641. PMID 32085811.
  • ^ "Pulse Rate Measurement". Healthwise. WebMD. Archived from the original on 23 July 2012. Retrieved 14 March 2011.
  • ^ Karadavut, Serhat; Altintop, Ismail (30 November 2021). "Pulse deficit in atrial fibrillation — a different perspective on rhythm or rate control strategy". Kardiologia Polska. 79 (11): 1231–1238. doi:10.33963/KP.a2021.0107.
  • ^ "www.meddean.luc.edu". Archived from the original on 2008-09-07. Retrieved 2009-05-20.
  • ^ "Vascular Surgery, University of Kansas School of Medicine". Archived from the original on 2009-02-04. Retrieved 2009-05-20.
  • ^ Dennis, Mark; Bowen, William Talbot; Cho, Lucy (2016). Mechanisms of Clinical Signs – EPub3. Elsevier Health Sciences. p. 177. ISBN 9780729585613. Archived from the original on 2023-07-03. Retrieved 2018-01-02.
  • ^ a b McGee, Steven (2016). Evidence-Based Physical Diagnosis E-Book. Elsevier Health Sciences. pp. 105–106. ISBN 9780323508711. Archived from the original on 2023-07-03. Retrieved 2018-01-02.
  • ^ Li JC, Yuan Y, Qin W, et al. (April 2007). "Evaluation of the tardus-parvus pattern in patients with atherosclerotic and nonatherosclerotic renal artery stenosis". J Ultrasound Med. 26 (4): 419–26. doi:10.7863/jum.2007.26.4.419. PMID 17384038. S2CID 11562194. Archived from the original on 2020-05-10. Retrieved 2018-01-02.
  • ^ Toy, Eugene, et al. Case Files: Internal Medicine. McGraw-Hill Companies, Inc. 2007. Page 43. ISBN 0-07-146303-8.
  • ^ Sanders, Roger C.; Winter, Thomas Charles (2007). Clinical Sonography: A Practical Guide. Lippincott Williams & Wilkins. p. 219. ISBN 9780781748698. Archived from the original on 2023-07-03. Retrieved 2018-01-02.
  • ^ Berg, Dale; Worzala, Katherine (2006). Atlas of Adult Physical Diagnosis. Lippincott Williams & Wilkins. p. 80. ISBN 9780781741903. Archived from the original on 2023-07-03. Retrieved 2020-10-03.
  • ^ Hajar, R. (2018). "The Pulse from Ancient to Modern Medicine". Heart Views. 19 (3): 117–120. doi:10.4103/HEARTVIEWS.HEARTVIEWS_16_19. PMC 6448473. PMID 31007864.
  • ^ "Rumi poem on the afflicted patient". Archived from the original on 2022-12-16. Retrieved 2022-12-16.
  • ^ Bigotti, Fabrizio; Taylor, David (2017). "The Pulsilogium of Santorio: New Light on Technology and Measurement in Early Modern Medicine". Societate Si Politica. 11 (2): 53–113. ISSN 1843-1348. PMC 6407692. PMID 30854144.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Pulse&oldid=1229721210"

    Categories: 
    Cardiovascular physiology
    Mathematics in medicine
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from December 2008
    All articles needing additional references
    All articles with unsourced statements
    Articles with unsourced statements from June 2024
    Articles with empty listen template
    Commons category link is on Wikidata
    Articles with GND identifiers
    Articles with J9U identifiers
    Articles with LCCN identifiers
     



    This page was last edited on 18 June 2024, at 10:57 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki