Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Hamiltonian (Ĥ)  





2 Eigenvalues of nuclear spin angular momentum  



2.1  Eigenvalues and Hamiltonian  







3 Two spins without coupling  





4 Eigenvalues of coupled spins  





5 Selection rule and transitions  





6 References  














Quantum mechanics of nuclear magnetic resonance (NMR) spectroscopy







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Nuclear magnetic resonance (NMR) spectroscopy uses the intrinsic magnetic moment that arises from the spin angular momentum of a spin-active nucleus.[1] If the element of interest has a nuclear spin that is not zero,[1] the nucleus may exist in different spin angular momentum states, where the energy of these states can be affected by an external magnetic field. For a spin I = ½ nucleus two energy levels may be considered: spin up and spin down, depending on how the spin aligns with the external magnetic field.[2] It is important to remember that, in the presence of an external magnetic field, individual nuclei may have random orientations other than up and down. However, the sample's bulk magnetization, that is, the sum of the total magnetic moments will determine the strength of the NMR signal.[3] In addition, the energy of the applied radio frequency used in NMR must be consistent with the energy difference between the spin states.[3]

Hamiltonian (Ĥ)[edit]

The Hamiltonian operator represents the energy operator. The Spin Hamiltonian for a nuclear spin under an applied magnetic field (B0) is,[3]

Ĥone spin = -γB0ÎZ

Where γ is the gyro-magnetic ratio and ÎZ is the z-component of the nuclear spin angular momentum.

The energy of the nuclear spin level is given by this Hamiltonian operator, since we know the eigenvalue for ψ. We will first determine the energy of states and subsequently convert it to frequency units since in NMR, energy expressed in frequency units is more common.

Eigenvalues of nuclear spin angular momentum[edit]

The equation of the Hamiltonian contains an angular momentum operator. So it will be easy if we find the eigenvalues of the angular momentum operator first and then substitute it into the Hamiltonian. For a spin half nucleus there are two eigenfunctions for ÎZ.[3]

Let m = +1/2 and m = -1/2 and eigenfunctions are,

ÎZ ψm = mħψm

Eigenvalues and Hamiltonian[edit]

Applying the equation of nuclear spin angular momentum (ÎZ ψm) to one spin Hamiltonian (Ĥone spin) will give,[3]

Ĥone spin ψm = -mħγB0ψm

From this, eigenvalue is,

Em = -mħγB0

In frequency units,

Em = -mγB0/2πHz

Introducing Larmor frequency (v0), Em = mv0Hz

Hence the Hamiltonian in frequency units, Ĥone spin = v0ÎZ

Two spins without coupling[edit]

If there are two spin states, then we have to change the Hamiltonian in such a way that it accommodates both the spin states.[3]

Ĥtwo spins, no coupling = v0,1Î1Z + v0,2Î2Z

v0,1 is the Larmor frequency of first spin and v0,2 is the Larmor frequency of second spin. Similarly Î1Z is the z-component of angular momentum operator of first spin and Î2Z is the z-component of angular momentum operator of first spin. Here in this case coupling is not considered. Here while considering the wave function we have to look into both spin states of both spin 1 and 2. The spin up state is represented by α and spin down is β. The wave functions hence will have four combinations as below. ψα,1 ψα,2 = αα ψα,1 ψβ,2 = αβ ψβ,1 ψα,2 = βα ψβ,1 ψβ,2 = ββ Applying these combinations into the two spin Hamiltonian above will give the eigenvalue which is the energy state. This is tabulated below.

Spin states Eigenfunction Eigenvalue (energy)
αα ψα,1 ψα,2 +(1/2)v0,1 + (1/2)v0,2
αβ ψα,1 ψβ,2 +(1/2)v0,1 - (1/2)v0,2
βα ψβ,1 ψα,2 -(1/2)v0,1 + (1/2)v0,2
ββ ψβ,1 ψβ,2 -(1/2)v0,1 - (1/2)v0,2

In general, the energy level (eigenvalue) can be written as;

Em = m1v0,1 + m2v0,2

Eigenvalues of coupled spins[edit]

To consider coupling of spin 1 and 2 a coupling constant (J) and corresponding coupling term is introduced in the Hamiltonian:[3]

Ĥtwo spins = v0,1Î1Z + v0,2Î2Z + J12Î1ZÎ2Z

Applying the wave functions in this Hamiltonian gives the eigenvalues as tabulated below.

Number Spin states Eigenfunction Eigenvalue (energy)
1 αα ψα,1 ψα,2 +(1/2)v0,1 + (1/2)v0,2 + (1/4)J12
2 αβ ψα,1 ψβ,2 +(1/2)v0,1 - (1/2)v0,2 - (1/4)J12
3 βα ψβ,1 ψα,2 -(1/2)v0,1 + (1/2)v0,2 - (1/4)J12
4 ββ ψβ,1 ψβ,2 -(1/2)v0,1 - (1/2)v0,2 + (1/4)J12

Selection rule and transitions[edit]

When two spins couple each other, the Hamiltonian operator will be,[3]

Ĥtwo spins = v0,1Î1Z + v0,2Î2Z + J12Î1ZÎ2Z

The eigenvalue,

Em = m1v0,1 + m2v0,2 + m1m2J12

The  selection rule for allowed transition is + or -1.[1] Here we are considering homonuclear protons. Thus their αβ and βα states will have the same energy. The transition energy can be calculated by reducing the energy (eigenvalue) of the upper state from the lower state. The transition energy in frequency units is tabulated below.

Transitions Spin states Frequency
1 to 2 αα to αβ -v0,2 - (1/2)J12
3 to 4 βα to ββ -v0,2 + (1/2)J12
1 to 3 αα to βα -v0,1 - (1/2)J12
2 to 4 αβ to ββ -v0,1 + (1/2)J12

The transitions given in the above table is represented in the figure below.

Possible transitions in the energy levels of two coupled nuclei (spin half) during nuclear magnetic resonance is depicted in the figure.

References[edit]

  1. ^ a b c McHale, Jeanne L. (2017-07-06). Molecular Spectroscopy. CRC Press. ISBN 978-1-4665-8661-1.
  • ^ Smart, Lesley E.; Moore, Elaine A. (2012-05-29). Solid State Chemistry: An Introduction, Fourth Edition. CRC Press. ISBN 978-1-4398-4790-9.
  • ^ a b c d e f g h Keeler, James (2010-05-24). Understanding NMR Spectroscopy. John Wiley & Sons. ISBN 978-0-470-74608-0.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Quantum_mechanics_of_nuclear_magnetic_resonance_(NMR)_spectroscopy&oldid=1187285233"

    Category: 
    Nuclear magnetic resonance spectroscopy
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 28 November 2023, at 08:34 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki