Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definitions  



1.1  Remarks  







2 Properties  



2.1  Uniqueness  





2.2  Exponential tightness  





2.3  Continuity  





2.4  Transformation of large deviation principles  







3 History and basic development  





4 See also  





5 References  














Rate function






Deutsch
Français
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematics — specifically, in large deviations theory — a rate function is a function used to quantify the probabilities of rare events. Such functions are used to formulate large deviation principles. A large deviation principle quantifies the asymptotic probability of rare events for a sequence of probabilities.

Arate function is also called a Cramér function, after the Swedish probabilist Harald Cramér.

Definitions[edit]

Rate function Anextended real-valued function defined on a Hausdorff topological space is said to be a rate function if it is not identically and is lower semi-continuous i.e. all the sub-level sets

are closedin. If, furthermore, they are compact, then is said to be a good rate function.

A family of probability measures on is said to satisfy the large deviation principle with rate function (and rate ) if, for every closed set and every open set ,

If the upper bound (U) holds only for compact (instead of closed) sets , then is said to satisfy the weak large deviations principle (with rate and weak rate function ).

Remarks[edit]

The role of the open and closed sets in the large deviation principle is similar to their role in the weak convergence of probability measures: recall that is said to converge weakly to if, for every closed set and every open set ,

There is some variation in the nomenclature used in the literature: for example, den Hollander (2000) uses simply "rate function" where this article — following Dembo & Zeitouni (1998) — uses "good rate function", and "weak rate function". Rassoul-Agha & Seppäläinen (2015) uses the term "tight rate function" instead of "good rate function" due to the connection with exponential tightness of a family of measures. Regardless of the nomenclature used for rate functions, examination of whether the upper bound inequality (U) is supposed to hold for closed or compact sets tells one whether the large deviation principle in use is strong or weak.

Properties[edit]

Uniqueness[edit]

A natural question to ask, given the somewhat abstract setting of the general framework above, is whether the rate function is unique. This turns out to be the case: given a sequence of probability measures (μδ)δ>0onX satisfying the large deviation principle for two rate functions I and J, it follows that I(x) = J(x) for all x ∈ X.

Exponential tightness[edit]

It is possible to convert a weak large deviation principle into a strong one if the measures converge sufficiently quickly. If the upper bound holds for compact sets F and the sequence of measures (μδ)δ>0isexponentially tight, then the upper bound also holds for closed sets F. In other words, exponential tightness enables one to convert a weak large deviation principle into a strong one.

Continuity[edit]

Naïvely, one might try to replace the two inequalities (U) and (L) by the single requirement that, for all Borel sets S ⊆ X,

The equality (E) is far too restrictive, since many interesting examples satisfy (U) and (L) but not (E). For example, the measure μδ might be non-atomic for all δ, so the equality (E) could hold for S = {x} only if I were identically +∞, which is not permitted in the definition. However, the inequalities (U) and (L) do imply the equality (E) for so-called I-continuous sets S ⊆ X, those for which

where and denote the interior and closureofSinX respectively. In many examples, many sets/events of interest are I-continuous. For example, if I is a continuous function, then all sets S such that

are I-continuous; all open sets, for example, satisfy this containment.

Transformation of large deviation principles[edit]

Given a large deviation principle on one space, it is often of interest to be able to construct a large deviation principle on another space. There are several results in this area:

History and basic development[edit]

The notion of a rate function emerged in the 1930s with the Swedish mathematician Harald Cramér's study of a sequence of i.i.d. random variables (Zi)i∈. Namely, among some considerations of scaling, Cramér studied the behavior of the distribution of the average asn→∞.[1] He found that the tails of the distribution of Xn decay exponentially as e(x) where the factor λ(x) in the exponent is the Legendre–Fenchel transform (a.k.a. the convex conjugate) of the cumulant-generating function For this reason this particular function λ(x) is sometimes called the Cramér function. The rate function defined above in this article is a broad generalization of this notion of Cramér's, defined more abstractly on a probability space, rather than the state space of a random variable.

See also[edit]

References[edit]

  1. ^ Cramér, Harald (1938). "Sur un nouveau théorème-limite de la théorie des probabilités". Colloque consacré à la théorie des probabilités, Part 3, Actualités scientifiques et industrielles (in French). 731: 5–23.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Rate_function&oldid=1199026965"

Categories: 
Asymptotic analysis
Large deviations theory
Hidden categories: 
CS1 French-language sources (fr)
Articles with short description
Short description matches Wikidata
Articles lacking in-text citations from June 2012
All articles lacking in-text citations
 



This page was last edited on 25 January 2024, at 18:08 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki