Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Occurrence  





2 Physical properties  





3 Chemical composition  





4 X-ray crystallography  





5 See also  





6 References  














Rayite






Català
Deutsch
Euskara
Italiano
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Rayite
General
CategoryPlagionite homologous series
Formula
(repeating unit)
Pb8(Ag,Tl)2Sb8S21
Crystal systemMonoclinic
Crystal class2/m - Prismatic
Unit cella = 13.6 Å, b = 11.96 Å
c = 24.49 Å;
β= 103.94°
Identification
ColorLead-Grey
Crystal habitTabular
CleavageNone
Mohs scale hardness2.5
LustreMetallic
StreakLead-Grey
Density6.13 g/cm3 (Calculated)
BirefringenceWeak
PleochroismWeak
Common impuritiesCu
References[1][2][3][4][5]

Rayite,amonoclinic mineral containing Lead-Silver-Thallium-Antimony, was found during microscopic and electron microprobe study of specimens from the complex, polymetallic sulphide-native metal sulpho-salt paragenesis of Rajpura-Dariba, Rajasthan, India. It is named after Dr. Santosh K. Ray of President College, Calcutta, India. It bears a striking resemblance to owyheeite in terms of its Lead/(Silver,Thallium)/Antimony ratio, yet its structural affinity lies with Semseyite. The average composition is Lead-47.06, Copper-0.03, Silver-4.54, Thallium-2.04, Antimony-27.42, Sulphur-19.59 by wt.% (total 100.68) suggesting an ideal formula of Pb8(Ag,Tl)2Sb8S21, where Ag > Tl. Meneghinite, Owyheeite, and Galena are related minerals.[1]

Occurrence[edit]

It was found in the ores of precambrian polymetallic massive-sulfide deposit interbedded with kyanite-graphite schists, diopside-bearing calc-silicates, and meta-cherts in Rajpura-Dariba deposit, Udaipur Division, Udaipur District, Dariba Mine, Rajasthan, India. It is observed in patches, measuring up to 0.5 mm, reaching a maximum dimension of about 30 μm.[1][2][3]

Physical properties[edit]

Rayite can occur as individual grains with a tabular habit that can reach a maximum diameter of about 30 um, or as patches up to 0.5 mm. Meneghinite, owyheeite, and galena are the related minerals. The mineral is lead grey in colour from a macro perspective, with a metallic lustre and a lead grey streak. Because of its small grainsize and rarity, no cleavage could be observed, and its density could not be calculated. It is also found that rayite is not radioactive.

Rayite is a white mineral with faint bluish and greenish under a microscope. When in touch with galena, it takes on a grey tint; when it grows in between meneghinite, it takes on a bluish-greenish tint. Under a microscope, rayite's colour and reflectance resemble owyheeite's, though the latter exhibits a more pronounced red, index, and olive tinge. The mineral's bireflectance is weak in the studied sections, and the colour of reflection pleochroism shifts from green to blue-green. Anisotropism is perceptible and appears as dark blue to dark reddish-brown when polarizers are not fully crossed, and no internal reflections are observed.[1][2][3]

Chemical composition[edit]

Electron microprobe analyses conducted on four grains, revealed the absence of elements with atomic numbers greater than 11. Calculations based on 39 atoms yielded satisfactory results, and the determined ideal formula was expressed as Pb8(Ag,Tl)2Sb8S21. The relationship between silver and thallium remains uncertain due to the available data. Microprobe analyses indicated a slight variation in thallium/silver ratios, suggesting the potential substitution of silver for thallium. The presence of an excess metal atom per unit formula compared to the ideal semseyite formula (Me17S21) is deemed noteworthy. Therefore, this implies that it is conceivable for half of the (silver + thallium) atoms to take the place of lead sites within the crystal structure. Simultaneously, the other half could fill the ordinarily unoccupied tetrahedral spaces between the "stibnite" chains, resembling the pattern observed in the bismuthite-aikinite homologous series. Earlier observations pointed to compositional variations in natural semseyite, indicating an excess of lead atoms beyond the stoichiometric composition, with statistical distribution of lead atoms within the unit cell.[4] The identification of rayite supported this proposition, suggesting its crystal structure as a "stuffed" derivative of the semseyite crystal.[5]

Element wt%
Pb 47.06
Cu 0.03
Ag 4.54
Tl 2.04
Sb 27.42
S 19.59
Total 100.68

[1]

X-ray crystallography[edit]

The material, subject to electron probe analysis, was extracted from a polished section beneath an ore microscope however fragments suitable for a single crystal study was not found. Utilizing unfiltered Fe-radiation and a 57.3 mm camera, X-ray powder diffraction data were obtained. Data showed a significant similarity to those reported for semseyite (lead,antimony,sulphur) however it wasn’t entirely identical. For the X-ray diffraction powder pattern analysis of rayite, cell dimensions were determined as follows: a = 13.603, b = 11.935, c = 24.453 Å, with a β angle of 106.05°, and the space group C2/c. The resulting lattice constants are approximately a = 13.60 ± 0.02, b = 11.96 ± 0.03, c = 24.49 ± 0.05 Å, with an angle β of 103.94 ± 0.12°. [1]

See also[edit]

References[edit]

  1. ^ a b c d e f Basu, K., NS, B., Mookherjee, A., Nn, M., & Ai, T. (1983). Rare Minerals from Rajpura-Dariba, Rajasthan, India. Iv: A New Pb-Ag-Tl-Sb Sulphosalt, Rayite
  • ^ a b c Rayite. Webmineral
  • ^ a b c Rayite. Mindat.org
  • ^ a b Mozgova, N. N. & Borodaev, Yu. S. (1972): The homologous series semseyite- fülöppite. Zapiski Vsesoyuz. Miner. Obshch., 101, 299-312 (in Russian)
  • ^ a b Wuensch, B. J. (1980): Superstructures In Sulfide Minerals. In: Cowler, J. М., Cohen, J. B., Salamon, M. B. & Wuensch, B. J., Eds., Modulated Struc- Tures 1979. Amer. Init. Phys. Conference Proc., 58, 337-354.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Rayite&oldid=1194583426"

    Categories: 
    Monoclinic minerals
    Sulfide minerals
    Lead minerals
    Silver minerals
    Thallium minerals
    Antimony minerals
    Minerals in space group 15
    Hidden category: 
    Wikipedia Student Program
     



    This page was last edited on 9 January 2024, at 18:54 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki