Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Definition  





2 Relation to random vector length  





3 Properties  



3.1  Differential entropy  







4 Parameter estimation  



4.1  Confidence intervals  







5 Generating random variates  





6 Related distributions  





7 Applications  





8 See also  





9 References  














Rayleigh distribution






Català
Deutsch
Español
فارسی
Français

Italiano
עברית
Magyar
Nederlands

Polski
Română
Русский
Slovenščina
Svenska
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Rayleigh
Probability density function
Plot of the Rayleigh PDF
Cumulative distribution function
Plot of the Rayleigh CDF
Parameters scale:
Support
PDF
CDF
Quantile
Mean
Median
Mode
Variance
Skewness
Excess kurtosis
Entropy
MGF
CF

Inprobability theory and statistics, the Rayleigh distribution is a continuous probability distribution for nonnegative-valued random variables. Up to rescaling, it coincides with the chi distribution with two degrees of freedom. The distribution is named after Lord Rayleigh (/ˈrli/).[1]

A Rayleigh distribution is often observed when the overall magnitude of a vector in the plane is related to its directional components. One example where the Rayleigh distribution naturally arises is when wind velocity is analyzed in two dimensions. Assuming that each component is uncorrelated, normally distributed with equal variance, and zero mean, which is infrequent, then the overall wind speed (vector magnitude) will be characterized by a Rayleigh distribution. A second example of the distribution arises in the case of random complex numbers whose real and imaginary components are independently and identically distributed Gaussian with equal variance and zero mean. In that case, the absolute value of the complex number is Rayleigh-distributed.

Definition[edit]

The probability density function of the Rayleigh distribution is[2]

where is the scale parameter of the distribution. The cumulative distribution functionis[2]

for

Relation to random vector length[edit]

Consider the two-dimensional vector which has components that are bivariate normally distributed, centered at zero, with equal variances , and independent. Then and have density functions

Let be the length of . That is, Then has cumulative distribution function

where is the disk

Writing the double integralinpolar coordinates, it becomes

Finally, the probability density function for is the derivative of its cumulative distribution function, which by the fundamental theorem of calculusis

which is the Rayleigh distribution. It is straightforward to generalize to vectors of dimension other than 2. There are also generalizations when the components have unequal variance or correlations (Hoyt distribution), or when the vector Y follows a bivariate Student t-distribution (see also: Hotelling's T-squared distribution).[3]

Generalization to bivariate Student's t-distribution

Suppose is a random vector with components that follows a multivariate t-distribution. If the components both have mean zero, equal variance, and are independent, the bivariate Student's-t distribution takes the form:

Let be the magnitude of . Then the cumulative distribution function (CDF) of the magnitude is:

where is the disk defined by:

Converting to polar coordinates leads to the CDF becoming:

Finally, the probability density function (PDF) of the magnitude may be derived:

In the limit as , the Rayleigh distribution is recovered because:

Properties[edit]

The raw moments are given by:

where is the gamma function.

The mean of a Rayleigh random variable is thus :

The standard deviation of a Rayleigh random variable is:

The variance of a Rayleigh random variable is :

The modeis and the maximum pdf is

The skewness is given by:

The excess kurtosis is given by:

The characteristic function is given by:

where is the imaginary error function. The moment generating function is given by

where is the error function.

Differential entropy[edit]

The differential entropy is given by[citation needed]

where is the Euler–Mascheroni constant.

Parameter estimation[edit]

Given a sample of N independent and identically distributed Rayleigh random variables with parameter ,

is the maximum likelihood estimate and also is unbiased.
is a biased estimator that can be corrected via the formula
[4] , where c4 is the correction factor used to unbias estimates of standard deviation for normal random variables.

Confidence intervals[edit]

To find the (1 − α) confidence interval, first find the bounds where:

 

then the scale parameter will fall within the bounds

  [5]

Generating random variates[edit]

Given a random variate U drawn from the uniform distribution in the interval (0, 1), then the variate

has a Rayleigh distribution with parameter . This is obtained by applying the inverse transform sampling-method.

Related distributions[edit]

Applications[edit]

An application of the estimation of σ can be found in magnetic resonance imaging (MRI). As MRI images are recorded as complex images but most often viewed as magnitude images, the background data is Rayleigh distributed. Hence, the above formula can be used to estimate the noise variance in an MRI image from background data.[7] [8]

The Rayleigh distribution was also employed in the field of nutrition for linking dietary nutrient levels and human and animal responses. In this way, the parameter σ may be used to calculate nutrient response relationship.[9]

In the field of ballistics, the Rayleigh distribution is used for calculating the circular error probable—a measure of a gun's precision.

Inphysical oceanography, the distribution of significant wave height approximately follows a Rayleigh distribution.[10]

See also[edit]

References[edit]

  1. ^ "The Wave Theory of Light", Encyclopedic Britannica 1888; "The Problem of the Random Walk", Nature 1905 vol.72 p.318
  • ^ a b Papoulis, Athanasios; Pillai, S. (2001) Probability, Random Variables and Stochastic Processes. ISBN 0073660116, ISBN 9780073660110 [page needed]
  • ^ Röver, C. (2011). "Student-t based filter for robust signal detection". Physical Review D. 84 (12): 122004. arXiv:1109.0442. Bibcode:2011PhRvD..84l2004R. doi:10.1103/physrevd.84.122004.
  • ^ Siddiqui, M. M. (1964) "Statistical inference for Rayleigh distributions", The Journal of Research of the National Bureau of Standards, Sec. D: Radio Science, Vol. 68D, No. 9, p. 1007
  • ^ Siddiqui, M. M. (1961) "Some Problems Connected With Rayleigh Distributions", The Journal of Research of the National Bureau of Standards; Sec. D: Radio Propagation, Vol. 66D, No. 2, p. 169
  • ^ Hogema, Jeroen (2005) "Shot group statistics"
  • ^ Sijbers, J.; den Dekker, A. J.; Raman, E.; Van Dyck, D. (1999). "Parameter estimation from magnitude MR images". International Journal of Imaging Systems and Technology. 10 (2): 109–114. CiteSeerX 10.1.1.18.1228. doi:10.1002/(sici)1098-1098(1999)10:2<109::aid-ima2>3.0.co;2-r.
  • ^ den Dekker, A. J.; Sijbers, J. (2014). "Data distributions in magnetic resonance images: a review". Physica Medica. 30 (7): 725–741. doi:10.1016/j.ejmp.2014.05.002. PMID 25059432.
  • ^ Ahmadi, Hamed (2017-11-21). "A mathematical function for the description of nutrient-response curve". PLOS ONE. 12 (11): e0187292. Bibcode:2017PLoSO..1287292A. doi:10.1371/journal.pone.0187292. ISSN 1932-6203. PMC 5697816. PMID 29161271.
  • ^ "Rayleigh Probability Distribution Applied to Random Wave Heights" (PDF). United States Naval Academy.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Rayleigh_distribution&oldid=1223930648"

    Categories: 
    Continuous distributions
    Exponential family distributions
    Hidden categories: 
    Wikipedia articles needing page number citations from April 2013
    Articles with short description
    Short description matches Wikidata
    All articles with unsourced statements
    Articles with unsourced statements from April 2013
     



    This page was last edited on 15 May 2024, at 07:06 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki