Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Characteristics  



1.1  Magnetic topology  







2 RFP in Fusion Research: comparison with other confinement configurations  



2.1  Advantages  





2.2  Disadvantages  







3 Plasma Physics Research  





4 See also  





5 External links  














Reversed field pinch






Deutsch
فارسی
Italiano

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 




In other projects  



Wikimedia Commons
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The q profile in a reversed field pinch
The poloidal field in a reversed field pinch

Areversed-field pinch (RFP) is a device used to produce and contain near-thermonuclear plasmas. It is a toroidal pinch that uses a unique magnetic field configuration as a scheme to magnetically confine a plasma, primarily to study magnetic confinement fusion. Its magnetic geometry is somewhat different from that of a tokamak. As one moves out radially, the portion of the magnetic field pointing toroidally reverses its direction, giving rise to the term reversed field. This configuration can be sustained with comparatively lower fields than that of a tokamak of similar power density. One of the disadvantages of this configuration is that it tends to be more susceptible to non-linear effects and turbulence. This makes it a useful system for studying non-ideal (resistive) magnetohydrodynamics. RFPs are also used in studying astrophysical plasmas, which share many common features.

The largest Reversed Field Pinch device presently in operation is the RFX (R/a = 2/0.46) in Padua, Italy. Others include the MST (R/a = 1.5/0.5) in the United States, EXTRAP T2R (R/a = 1.24/0.18) in Sweden, RELAX (R/a = 0.51/0.25) in Japan, and KTX (R/a = 1.4/0.4) in China.

Characteristics

[edit]

Unlike the Tokamak, which has a much larger magnetic field in the toroidal direction than the poloidal direction, an RFP has a comparable field strength in both directions (though the sign of the toroidal field reverses). Moreover, a typical RFP has a field strength approximately one half to one tenth that of a comparable Tokamak. The RFP also relies on driving current in the plasma to reinforce the field from the magnets through the dynamo effect.

Magnetic topology

[edit]
The Internal Field in an RFP

The reversed-field pinch works towards a state of minimum energy.

The magnetic field lines coil loosely around a center torus. They coil outwards. Near the plasma edge, the toroidal magnetic field reverses and the field lines coil in the reverse direction.

Internal fields are bigger than the fields at the magnets.

RFP in Fusion Research: comparison with other confinement configurations

[edit]

The RFP has many features that make it a promising configuration for a potential fusion reactor.

Advantages

[edit]
  1. Superconducting Magnets:
    • RFPs may not need superconducting magnets, providing a significant advantage over tokamaks.
    • Superconducting magnets are delicate, expensive, and must be shielded from the neutron-rich fusion environment.
  2. Shell as a Magnetic Coil:
    • Some RFP experiments, like the Madison Symmetric Torus, use a close-fitting shell as a magnetic coil.
    • Driving current through the shell itself is attractive for reactor design.
    • A solid copper shell could be robust against high-energy neutrons compared to superconducting magnets.
  3. Surface Instabilities:
    • RFPs are susceptible to surface instabilities, necessitating a close-fitting shell.
  4. Beta Limit:
  5. Ignition Possibility:
    • There's a possibility that a reversed field pinch could achieve ignition solely with ohmic power.
    • This involves driving current through the plasma and generating heat from electrical resistance rather than through electron cyclotron resonance, potentially simplifying reactor design compared to tokamaks.
    • However, it may not be operated in a steady state.

Disadvantages

[edit]

Several key areas present challenges in the development of RFP reactors. Researchers are actively working on solutions for these issues:

Plasma Physics Research

[edit]

The Reversed Field Pinch is also interesting from a physics standpoint. RFP dynamics are highly turbulent. RFPs also exhibit a strong plasma dynamo, similar to many astrophysical bodies. Basic plasma science is another important aspect of Reversed Field Pinch research.

See also

[edit]
[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Reversed_field_pinch&oldid=1234017479"

Category: 
Magnetic confinement fusion
Hidden categories: 
Articles with short description
Short description matches Wikidata
 



This page was last edited on 12 July 2024, at 04:11 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Code of Conduct

Developers

Statistics

Cookie statement

Mobile view



Wikimedia Foundation
Powered by MediaWiki