Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Advantages  





2 Disadvantages  





3 Access protocols  





4 Misconceptions  





5 References  














Ring network






العربية
Azərbaycanca

Català
Čeština
Deutsch
Español
Euskara
فارسی
Français
Gaeilge
Galego

Hrvatski
Bahasa Indonesia
Қазақша
Latviešu
Magyar
Македонски
Bahasa Melayu
Nederlands

پښتو
Polski
Português
Русский
Shqip
Slovenčina
Slovenščina
Svenska
ி
Türkçe
Українська

 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Image showing ring network layout

Aring network is a network topology in which each node connects to exactly two other nodes, forming a single continuous pathway for signals through each node – a ring. Data travels from node to node, with each node along the way handling every packet.

Rings can be unidirectional, with all traffic travelling either clockwise or anticlockwise around the ring, or bidirectional (as in SONET/SDH).[1] Because a unidirectional ring topology provides only one pathway between any two nodes, unidirectional ring networks may be disrupted by the failure of a single link.[2] A node failure or cable break might isolate every node attached to the ring. In response, some ring networks add a "counter-rotating ring" (C-Ring) to form a redundant topology: in the event of a break, data are wrapped back onto the complementary ring before reaching the end of the cable, maintaining a path to every node along the resulting C-Ring. Such "dual ring" networks include the ITU-T's PSTN telephony systems network Signalling System No. 7 (SS7), Spatial Reuse Protocol, Fiber Distributed Data Interface (FDDI), Resilient Packet Ring, and Ethernet Ring Protection Switching. IEEE 802.5 networks – also known as IBM Token Ring networks – avoid the weakness of a ring topology altogether: they actually use a star topology at the physical layer and a media access unit (MAU) to imitate a ring at the datalink layer. Ring networks are used by ISPs to provide data backhaul services, connecting the ISP's facilities such as central offices/headends together.[3][4]

All Signalling System No. 7 (SS7), and some SONET/SDH rings have two sets of bidirectional links between nodes. This allows maintenance or failures at multiple points of the ring usually without loss of the primary traffic on the outer ring by switching the traffic onto the inner ring past the failure points.

Advantages

[edit]

Disadvantages

[edit]

Access protocols

[edit]

Rings can be used to carry circuits or packets or a combination of both. SDH rings carry circuits. Circuits are set up with out-of-band signalling protocols, whereas packets are usually carried via a Medium Access Control Protocol (MAC).

The purpose of media access control is to determine which station transmits when. As in any MAC protocol, the aims are to resolve contention and provide fairness. There are three main classes of media access protocol for ring networks: slotted, token and register insertion.

The slotted ring treats the latency of the ring network as a large shift register that permanently rotates. It is formatted into so-called slots of fixed size. A slot is either full or empty, as indicated by control flags in the head of the slot. A station that wishes to transmit waits for an empty slot and puts data in. Other stations can copy out the data and may free the slot, or it may circulate back to the source who frees it. An advantage of source-release, if the sender is banned from immediately re-using it, is that all other stations get the chance to use it first, hence avoiding bandwidth hogging. The pre-eminent example of the slotted ring is the Cambridge Ring.

Misconceptions

[edit]

References

[edit]
  1. ^ Forouzan, Behrouz A. (2007). Data Communications and Networking. Huga Media. ISBN 9780072967753.
  • ^ Bradley Mitchell. "Introduction to Computer Network Topology". About.com. Retrieved January 18, 2016.
  • ^ Bartz, Robert J. (24 February 2015). Mobile Computing Deployment and Management: Real World Skills for CompTIA Mobility+ Certification and Beyond. John Wiley & Sons. ISBN 9781118824610.
  • ^ Implementación de DOCSIS 3.0 sobre redes HFC. openaccess.uoc.edu. Retrieved 26 January 2024
  • ^ "HWM". May 2003.
  • ^ "3.3 - Network Topologies". ITRevision.co.uk - OCR Level 3. Retrieved 2023-06-10.
  • ^ "Difference between Star and Ring Topology". GeeksforGeeks. 2019-05-16. Retrieved 2023-06-10.

  • Retrieved from "https://en.wikipedia.org/w/index.php?title=Ring_network&oldid=1215882720"

    Category: 
    Network topology
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from December 2007
    All articles needing additional references
    Articles with J9U identifiers
    Articles with LCCN identifiers
     



    This page was last edited on 27 March 2024, at 18:18 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki