Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Mathematical foundation  





2 Application  





3 Relation to other roughness measures  





4 References  





5 External links  





6 See also  














Roughness length






Français
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


A plot of a typical log wind profile under statically neutral conditions. The roughness length plays a part in determining the slope of the line.

Roughness length () is a parameter of some vertical wind profile equations that model the horizontal mean wind speed near the ground. In the log wind profile, it is equivalent to the height at which the wind speed theoretically becomes zero in the absence of wind-slowing obstacles and under neutral conditions. In reality, the wind at this height no longer follows a mathematical logarithm. It is so named because it is typically related to the height of terrain roughness elements (i.e. protrusions from and/or depressions into the surface). For instance, forests tend to have much larger roughness lengths than tundra. The roughness length does not exactly correspond to any physical length. However, it can be considered as a length-scale representation of the roughness of the surface.[1]

Mathematical foundation

[edit]

The roughness length appears in the expression for the mean wind speed near the ground derived using the Monin–Obukhov similarity theory:[2]

where

In the simplest possible case (statically neutral conditions and no wind-slowing obstacles), the mean wind speed simplifies to:

This provides a method to calculate the roughness length by measuring the friction velocity and the mean wind velocity (at known elevation) in a given, relatively flat location (under neutral conditions) using an anemometer.[4] Of note is that, in this simplified form, the log wind profile is identical in form to the dimensional law of the wall.

If we don't know the friction velocity, one can calculate the surface roughness as follow

Due to the limitation of observation instruments and the theory of mean values, the levels (z) should be chosen where there is enough difference between the measurement readings. If one has more than two readings, the measurements can be fit to the above equation to find the roughness length. When calculating the surface roughness, the displacement height can be neglected.

Application

[edit]

As an approximation, the roughness length is approximately one-tenth of the height of the surface roughness elements. For example, short grass of height 0.01 meters has a roughness length of approximately 0.001 meters. Surfaces are rougher if they have more protrusions. Forests have much larger roughness lengths than tundra, for example. Roughness length is an important concept in urban meteorology as the building of tall structures, such as skyscrapers, has an effect on roughness length and wind patterns.

Terrain description (m)
Open sea, Fetch at least 5 km 0.0002
Mud flats, snow; no vegetation, no obstacles 0.005
Open flat terrain; grass, few isolated obstacles 0.03
Low crops; occasional large obstacles, x/H >20 0.10
High crops; scattered obstacles, 15 < x/H <20 0.25
parkland, bushes; numerous obstacles, x/H ≈ 10 0.5
Regular large obstacle coverage (suburb, forest) 1.0
City centre with high- and low-rise buildings ≥ 2

[5]

For urban areas, the roughness length changes with the wind direction[6]

Relation to other roughness measures

[edit]

The roughness length is one of many possible measures of the roughness of a surface. For example, in classical mechanics the coefficient of friction is commonly used to measure the roughness of a surface as it relates to the force exerted on another contacted object. And, in fluid dynamics, hydraulic roughness is a measure of the resistance water experiences when flowing over land or through a channel. All of these measures ultimately derive from frictional forces, which result from irregularities on the surfaces of relevance.[citation needed]

References

[edit]
  1. ^ E. Linacre and B. Geerts. "Roughness length". http://www-das.uwyo.edu/~geerts/cwx/notes/chap14/roughness.html.
  • ^ a b American Meteorological Society Glossary of Meteorology. "aerodynamic roughness length". https://glossary.ametsoc.org/wiki/Aerodynamic_roughness_length.
  • ^ Stull, Roland. "Static Stability and Atmospheric Soundings". https://www.eoas.ubc.ca/courses/atsc113/flying/met_concepts/03-met_concepts/03b-static-stability/index.html.
  • ^ National Center for Atmospheric Research Earth Observing Laboratory. "Calculation of roughness length and displacement height". https://www.eol.ucar.edu/content/calculation-roughness-length-and-displacement-height.
  • ^ WMO Guide to Meteorological Instruments and Methods of Observation WMO-No. 8 page I.5-13
  • ^ Fattal, Eyal; David-Saroussi, Hadas; Klausner, Ziv; Buchman, Omri (May 2021). "An Urban Lagrangian Stochastic Dispersion Model for Simulating Traffic Particulate-Matter Concentration Fields". Atmosphere. 12 (5): 580. Bibcode:2021Atmos..12..580F. doi:10.3390/atmos12050580. ISSN 2073-4433.
  • [edit]

    See also

    [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Roughness_length&oldid=1208655769"

    Categories: 
    Atmospheric dispersion modeling
    Fluid dynamics
    Boundary layer meteorology
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Articles needing additional references from January 2022
    All articles needing additional references
    All articles with unsourced statements
    Articles with unsourced statements from January 2022
     



    This page was last edited on 18 February 2024, at 11:09 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki