Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Derivation  





2 Extension  





3 See also  





4 Notes  





5 References  














Rule of three (statistics)






Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Comparison of the rule of three to the exact binomial one-sided confidence interval with no positive samples

Instatistical analysis, the rule of three states that if a certain event did not occur in a sample with n subjects, the interval from 0 to 3/n is a 95% confidence interval for the rate of occurrences in the population. When n is greater than 30, this is a good approximation of results from more sensitive tests. For example, a pain-relief drug is tested on 1500 human subjects, and no adverse event is recorded. From the rule of three, it can be concluded with 95% confidence that fewer than 1 person in 500 (or 3/1500) will experience an adverse event. By symmetry, for only successes, the 95% confidence interval is [1−3/n,1].

The rule is useful in the interpretation of clinical trials generally, particularly in phase II and phase III where often there are limitations in duration or statistical power. The rule of three applies well beyond medical research, to any trial done n times. If 300 parachutes are randomly tested and all open successfully, then it is concluded with 95% confidence that fewer than 1 in 100 parachutes with the same characteristics (3/300) will fail.[1]

Derivation[edit]

A 95% confidence interval is sought for the probability p of an event occurring for any randomly selected single individual in a population, given that it has not been observed to occur in n Bernoulli trials. Denoting the number of events by X, we therefore wish to find the values of the parameter p of a binomial distribution that give Pr(X = 0) ≤ 0.05. The rule can then be derived[2] either from the Poisson approximation to the binomial distribution, or from the formula (1−p)n for the probability of zero events in the binomial distribution. In the latter case, the edge of the confidence interval is given by Pr(X = 0) = 0.05 and hence (1−p)n = .05 so n ln(1–p) = ln .05 ≈ −2.996. Rounding the latter to −3 and using the approximation, for p close to 0, that ln(1−p) ≈ −p (Taylor's formula), we obtain the interval's boundary 3/n.

By a similar argument, the numerator values of 3.51, 4.61, and 5.3 may be used for the 97%, 99%, and 99.5% confidence intervals, respectively, and in general the upper end of the confidence interval can be given as , where is the desired confidence level.

Extension[edit]

The Vysochanskij–Petunin inequality shows that the rule of three holds for unimodal distributions with finite variance beyond just the binomial distribution, and gives a way to change the factor 3 if a different confidence is desired. Chebyshev's inequality removes the assumption of unimodality at the price of a higher multiplier (about 4.5 for 95% confidence). Cantelli's inequality is the one-tailed version of Chebyshev's inequality.

See also[edit]

Notes[edit]

  1. ^ There are other meanings of the term "rule of three" in mathematics, and a further distinct meaning within statistics:

    A century and a half ago Charles Darwin said he had "no Faith in anything short of actual measurement and the Rule of Three," by which he appeared to mean the peak of arithmetical accomplishment in a nineteenth-century gentleman, solving for x in "6 is to 3 as 9 is to x." Some decades later, in the early 1900s, Karl Pearson shifted the meaning of the rule of three – "take 3σ [three standard deviations] as definitely significant" – and claimed it for his new journal of significance testing, Biometrika. Even Darwin late in life seems to have fallen into the confusion. (Ziliak and McCloskey, 2008, p. 26; parenthetic gloss in original)

  • ^ "Professor Mean" (2010) "Confidence interval with zero events", The Children's Mercy Hospital. Retrieved 2013-01-01.
  • References[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Rule_of_three_(statistics)&oldid=1181885733"

    Categories: 
    Clinical trials
    Statistical approximations
    Medical statistics
    Nursing research
     



    This page was last edited on 25 October 2023, at 20:24 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki