Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Discovery  





2 Applications  



2.1  Protein purification  





2.2  Protein complex purification  





2.3  Proteomics  





2.4  Imaging  





2.5  Surface plasmon resonance  







3 See also  





4 References  





5 Further reading  














SBP-tag






Deutsch
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


The Streptavidin-Binding Peptide (SBP)-Tag is a 38-amino acid sequence that may be engineered into recombinant proteins. Recombinant proteins containing the SBP-Tag bind to streptavidin and this property may be utilized in specific purification, detection or immobilization strategies.[citation needed]

The sequence of the SBP tag is MDEKTTGWRGGHVVEGLAGELEQLRARLEHHPQGQREP.[1]

Discovery[edit]

The Streptavidin-Binding Peptide was discovered within a library of seven trillion stochastically generated peptides using the in vitro selection technique of mRNA Display. Selection was performed by incubating with streptavidin-agarose followed by elution with biotin.[2] The SBP-Tag has been shown to bind streptavidin with an equilibrium dissociation constant of 2.5nM[1][2] and is readily eluted with biotin under native conditions.[1][2]

Applications[edit]

Protein purification[edit]

Because of the mild elution conditions (biotin plus wash buffer) SBP-Tagged proteins can be generated in a relatively pure state with a single purification step.[1][3][4] There are several relatively abundant mammalian proteins that inherently associate with the IMAC matrices that bind to the more commonly used Polyhistidine-tag (His-tag). For this reason non-IMAC purification protocols, including with the SBP-Tag, are often preferred for proteins that are expressed in mammalian cells.[citation needed]

Protein complex purification[edit]

Complexes of interacting proteins may also be purified using the SBP-Tag because elution with biotin permits recovery under conditions in which desired complexes remain associated. For example, the Condensin Complex was purified by Kim et al. [2010] and complexes with the TAZ transcriptional co-activator were purified by Zhang et al. [2009]. The SBP-Tag has also been incorporated into several Tandem Affinity Purification (TAP) systems in which successive purification steps are utilized with multiple tags, for example GFP fusion proteins and BTK-protein complexes were purified using a TAP protocol with the SBP-Tag and the His-Tag,[5][6] HDGF-protein complexes were purified using a TAP protocol with the SBP-Tag and with the FLAG-tag[7] and Wnt complexes were purified using a TAP protocol with the SBP-Tag and with the [Calmodulin-Tag].[8] TAP is generally used with protein complexes and several studies report significant improvements in purity and yield when the SBP-Tag TAP systems are compared to non-SBP-Tag systems.[9][10][11] Commercial TAP systems that use the SBP-Tag include the Interplay® Adenoviral and Mammalian TAP Systems sold by Agilent Technologies, similar products are sold by Sigma-Aldrich.[12]

Proteomics[edit]

Screens for biologically relevant protein-protein interactions have been performed using Tandem Affinity Purification (TAP) with the SBP-Tag and Protein A,[10] for interaction proteomics and transcription factor complexes with the SBP-Tag and Protein G,[10][13] for proteins that interact with the Dengue Virus protein DENV-2 NS4A with the SBP-Tag and the Calmodulin Tag.[14] and for proteins that interact with protein phosphatase 2A (PP2A) with the SBP-Tag and the hemagglutinin (HA)-tag.[11]

Imaging[edit]

The SBP-Tag will also bind to streptavidin or streptavidin reagents in solution. Applications of these engineered associations include the visualization of specific proteins within living cells,[15] monitoring of the kinetics of the translation of individual proteins in an in vitro translation system,[16] control of the integration of a multi-spanning membrane protein into the endoplasmic reticulum by fusing the SBP-Tag to the N-terminal translocation sequence and then halting integration with streptavidin and restarting integration with biotin.[17][18] Fluorescent streptavidin reagents (e.g. streptavidin-HRP) can be used to visualize the SBP-tag by immunoblotting of SDS-PAGE.[1][19][20] Additionally, antibodies to the SBP-tag are available commercially.[citation needed]

Surface plasmon resonance[edit]

The SBP-Tag has been used to reversibly immobilize recombinant proteins onto streptavidin-functionalized surfaces thereby permitting interaction assessment such as by surface plasmon resonance (SPR) techniques with re-use of the functionalized surface.[21] SPR has also been used to compare the SBP-Tag with other streptavidin-binding peptides such as Strep-tag.[22]

See also[edit]

References[edit]

  1. ^ a b c d e Keefe, Anthony D.; Wilson, David S.; Seelig, Burckhard; Szostak, Jack W. (2001). "One-Step Purification of Recombinant Proteins Using a Nanomolar-Affinity Streptavidin-Binding Peptide, the SBP-Tag". Protein Expression and Purification. 23 (3): 440–6. doi:10.1006/prep.2001.1515. PMID 11722181.
  • ^ a b c Wilson, David S.; Keefe, Anthony D.; Szostak, Jack W. (2001). "The use of mRNA display to select high-affinity protein-binding peptides". Proceedings of the National Academy of Sciences. 98 (7): 3750–5. Bibcode:2001PNAS...98.3750W. doi:10.1073/pnas.061028198. PMC 31124. PMID 11274392.
  • ^ Ichikawa, Muneyoshi; Watanabe, Yuta; Murayama, Takashi; Toyoshima, Yoko Yano (2011). "Recombinant human cytoplasmic dynein heavy chain 1 and 2: Observation of dynein-2 motor activity in vitro". FEBS Letters. 585 (15): 2419–23. doi:10.1016/j.febslet.2011.06.026. PMID 21723285. S2CID 27909093.
  • ^ Li, Feng; Herrera, Jeremy; Zhou, Sharleen; Maslov, Dmitri A.; Simpson, Larry (2011). "Trypanosome REH1 is an RNA helicase involved with the 3'-5' polarity of multiple gRNA-guided uridine insertion/deletion RNA editing". Proceedings of the National Academy of Sciences. 108 (9): 3542–7. Bibcode:2011PNAS..108.3542L. doi:10.1073/pnas.1014152108. PMC 3048136. PMID 21321231.
  • ^ Li, Yifeng; Franklin, Sarah; Zhang, Michael J.; Vondriska, Thomas M. (2011). "Highly efficient purification of protein complexes from mammalian cells using a novel streptavidin-binding peptide and hexahistidine tandem tag system: Application to Bruton's tyrosine kinase". Protein Science. 20 (1): 140–9. doi:10.1002/pro.546. PMC 3047070. PMID 21080425.
  • ^ Kobayashi, Takuya; Morone, Nobuhiro; Kashiyama, Taku; Oyamada, Hideto; Kurebayashi, Nagomi; Murayama, Takashi (2008). Imhof, Axel (ed.). "Engineering a Novel Multifunctional Green Fluorescent Protein Tag for a Wide Variety of Protein Research". PLOS ONE. 3 (12): e3822. Bibcode:2008PLoSO...3.3822K. doi:10.1371/journal.pone.0003822. PMC 2585475. PMID 19048102.
  • ^ Zhao, Jian; Yu, Hongxiu; Lin, Ling; Tu, Jun; Cai, Lili; Chen, Yanmei; Zhong, Fan; Lin, Chengzhao; et al. (2011). "Interactome study suggests multiple cellular functions of hepatoma-derived growth factor (HDGF)". Journal of Proteomics. 75 (2): 588–602. doi:10.1016/j.jprot.2011.08.021. PMID 21907836.
  • ^ Ahlstrom, Robert; Yu, Alan S. L. (2009). "Characterization of the kinase activity of a WNK4 protein complex". AJP: Renal Physiology. 297 (3): F685–92. doi:10.1152/ajprenal.00358.2009. PMC 2739714. PMID 19587141.
  • ^ Kyriakakis, Phillip P.; Tipping, Marla; Abed, Louka; Veraksa, Alexey (2008). "Tandem affinity purification in Drosophila: The advantages of the GS-TAP system". Fly. 2 (4): 229–35. doi:10.4161/fly.6669. PMID 18719405.
  • ^ a b c Bürckstümmer, Tilmann; Bennett, Keiryn L; Preradovic, Adrijana; Schütze, Gregor; Hantschel, Oliver; Superti-Furga, Giulio; Bauch, Angela (2006). "An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells". Nature Methods. 3 (12): 1013–9. doi:10.1038/nmeth968. PMID 17060908. S2CID 7069058.
  • ^ a b Glatter, Timo; Wepf, Alexander; Aebersold, Ruedi; Gstaiger, Matthias (2009). "An integrated workflow for charting the human interaction proteome: Insights into the PP2A system". Molecular Systems Biology. 5 (1): 237. doi:10.1038/msb.2008.75. PMC 2644174. PMID 19156129.
  • ^ Li, Yifeng (2011). "The tandem affinity purification technology: An overview". Biotechnology Letters. 33 (8): 1487–99. doi:10.1007/s10529-011-0592-x. PMID 21424840. S2CID 157683.
  • ^ Van Leene, Jelle; Eeckhout, Dominique; Persiau, Geert; Van De Slijke, Eveline; Geerinck, Jan; Van Isterdael, Gert; Witters, Erwin; De Jaeger, Geert (2011). "Isolation of Transcription Factor Complexes from Arabidopsis Cell Suspension Cultures by Tandem Affinity Purification". In Yuan, Ling; Perry, Sharyn E (eds.). Plant Transcription Factors. Methods in Molecular Biology. Vol. 754. pp. 195–218. doi:10.1007/978-1-61779-154-3_11. ISBN 978-1-61779-153-6. PMID 21720954.
  • ^ Anwar, Azlinda; Leong, K. M.; Ng, Mary L.; Chu, Justin J. H.; Garcia-Blanco, Mariano A. (2009). "The Polypyrimidine Tract-binding Protein Is Required for Efficient Dengue Virus Propagation and Associates with the Viral Replication Machinery". Journal of Biological Chemistry. 284 (25): 17021–9. doi:10.1074/jbc.M109.006239. PMC 2719340. PMID 19380576.
  • ^ McCann, Corey M.; Bareyre, Florence M.; Lichtman, Jeff W.; Sanes, Joshua R. (2005). "Peptide tags for labeling membrane proteins in live cells with multiple fluorophores". BioTechniques. 38 (6): 945–52. doi:10.2144/05386IT02. PMID 16018556.
  • ^ Takahashi, Shuntaro; Iida, Masaaki; Furusawa, Hiroyuki; Shimizu, Yoshihiro; Ueda, Takuya; Okahata, Yoshio (2009). "Real-Time Monitoring of Cell-Free Translation on a Quartz-Crystal Microbalance". Journal of the American Chemical Society. 131 (26): 9326–32. doi:10.1021/ja9019947. PMID 19518055.
  • ^ Kida, Yuichiro; Morimoto, Fumiko; Sakaguchi, Masao (2007). "Two translocating hydrophilic segments of a nascent chain span the ER membrane during multispanning protein topogenesis". The Journal of Cell Biology. 179 (7): 1441–52. doi:10.1083/jcb.200707050. PMC 2373506. PMID 18166653.
  • ^ Kida, Y.; Morimoto, F.; Sakaguchi, M. (2008). "Signal Anchor Sequence Provides Motive Force for Polypeptide Chain Translocation through the Endoplasmic Reticulum Membrane". Journal of Biological Chemistry. 284 (5): 2861–6. doi:10.1074/jbc.M808020200. PMID 19010775.
  • ^ Edelmann, Mariola J.; Iphöfer, Alexander; Akutsu, Masato; Altun, Mikael; Di Gleria, Katalin; Kramer, Holger B.; Fiebiger, Edda; Dhe-Paganon, Sirano; Kessler, Benedikt M. (2009). "Structural basis and specificity of human otubain 1-mediated deubiquitination" (PDF). Biochemical Journal. 418 (2): 379–90. doi:10.1042/BJ20081318. PMID 18954305.
  • ^ Hoer, Simon; Smith, Lorraine; Lehner, Paul J. (2007). "MARCH-IX mediates ubiquitination and downregulation of ICAM-1". FEBS Letters. 581 (1): 45–51. doi:10.1016/j.febslet.2006.11.075. PMID 17174307. S2CID 22461058.
  • ^ Li, Yong-Jin; Bi, Li-Jun; Zhang, Xian-En; Zhou, Ya-Feng; Zhang, Ji-Bin; Chen, Yuan-Yuan; Li, Wei; Zhang, Zhi-Ping (2006). "Reversible immobilization of proteins with streptavidin affinity tags on a surface plasmon resonance biosensor chip". Analytical and Bioanalytical Chemistry. 386 (5): 1321–6. doi:10.1007/s00216-006-0794-6. PMID 17006676. S2CID 6074268.
  • ^ Huang, Xu; Zhang, Xian-En; Zhou, Ya-Feng; Zhang, Zhi-Ping; Cass, Anthony E. G. (2007). "Construction of a high sensitive Escherichia coli alkaline phosphatase reporter system for screening affinity peptides". Journal of Biochemical and Biophysical Methods. 70 (3): 435–9. doi:10.1016/j.jbbm.2006.10.006. PMID 17156847.
  • Further reading[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=SBP-tag&oldid=1196151532"

    Categories: 
    Amino acids
    Biochemical separation processes
    Peptides
    Protein methods
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
    Wikipedia articles with style issues from January 2012
    All articles with style issues
    All articles with unsourced statements
    Articles with unsourced statements from November 2011
     



    This page was last edited on 16 January 2024, at 15:57 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki