Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Statement  





2 Variants  





3 See also  





4 References  





5 Further reading  














Sard's theorem






Deutsch
Español
Français
Galego

Italiano
Nederlands

Русский
Українська
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Inmathematics, Sard's theorem, also known as Sard's lemma or the Morse–Sard theorem, is a result in mathematical analysis that asserts that the set of critical values (that is, the image of the set of critical points) of a smooth function f from one Euclidean spaceormanifold to another is a null set, i.e., it has Lebesgue measure 0. This makes the set of critical values "small" in the sense of a generic property. The theorem is named for Anthony Morse and Arthur Sard.

Statement[edit]

More explicitly,[1] let

be, (that is, times continuously differentiable), where . Let denote the critical setof which is the set of points at which the Jacobian matrixof has rank . Then the image has Lebesgue measure 0 in .

Intuitively speaking, this means that although may be large, its image must be small in the sense of Lebesgue measure: while may have many critical points in the domain , it must have few critical values in the image .

More generally, the result also holds for mappings between differentiable manifolds and of dimensions and , respectively. The critical set of a function

consists of those points at which the differential

has rank less than as a linear transformation. If , then Sard's theorem asserts that the image of has measure zero as a subset of . This formulation of the result follows from the version for Euclidean spaces by taking a countable set of coordinate patches. The conclusion of the theorem is a local statement, since a countable union of sets of measure zero is a set of measure zero, and the property of a subset of a coordinate patch having zero measure is invariant under diffeomorphism.

Variants[edit]

There are many variants of this lemma, which plays a basic role in singularity theory among other fields. The case was proven by Anthony P. Morse in 1939,[2] and the general case by Arthur Sard in 1942.[1]

A version for infinite-dimensional Banach manifolds was proven by Stephen Smale.[3]

The statement is quite powerful, and the proof involves analysis. In topology it is often quoted — as in the Brouwer fixed-point theorem and some applications in Morse theory — in order to prove the weaker corollary that “a non-constant smooth map has at least one regular value”.

In 1965 Sard further generalized his theorem to state that if is for and if is the set of points such that has rank strictly less than , then the r-dimensional Hausdorff measureof is zero.[4] In particular the Hausdorff dimensionof is at most r. Caveat: The Hausdorff dimension of can be arbitrarily close to r.[5]

See also[edit]

References[edit]

  1. ^ a b Sard, Arthur (1942), "The measure of the critical values of differentiable maps", Bulletin of the American Mathematical Society, 48 (12): 883–890, doi:10.1090/S0002-9904-1942-07811-6, MR 0007523, Zbl 0063.06720.
  • ^ Morse, Anthony P. (January 1939), "The behaviour of a function on its critical set", Annals of Mathematics, 40 (1): 62–70, Bibcode:1939AnMat..40...62M, doi:10.2307/1968544, JSTOR 1968544, MR 1503449.
  • ^ Smale, Stephen (1965), "An Infinite Dimensional Version of Sard's Theorem", American Journal of Mathematics, 87 (4): 861–866, doi:10.2307/2373250, JSTOR 2373250, MR 0185604, Zbl 0143.35301.
  • ^ Sard, Arthur (1965), "Hausdorff Measure of Critical Images on Banach Manifolds", American Journal of Mathematics, 87 (1): 158–174, doi:10.2307/2373229, JSTOR 2373229, MR 0173748, Zbl 0137.42501 and also Sard, Arthur (1965), "Errata to Hausdorff measures of critical images on Banach manifolds", American Journal of Mathematics, 87 (3): 158–174, doi:10.2307/2373229, JSTOR 2373074, MR 0180649, Zbl 0137.42501.
  • ^ "Show that f(C) has Hausdorff dimension at most zero", Stack Exchange, July 18, 2013
  • Further reading[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Sard%27s_theorem&oldid=1206524466"

    Categories: 
    Lemmas in analysis
    Smooth functions
    Multivariable calculus
    Singularity theory
    Theorems in analysis
    Theorems in differential geometry
    Theorems in measure theory
    Hidden categories: 
    Articles with short description
    Short description is different from Wikidata
     



    This page was last edited on 12 February 2024, at 11:09 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki