Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Physics potential and goals  



1.1  Physics with neutrinos  





1.2  Physics with feebly interacting particles  







2 See also  





3 References  





4 External links  














Scattering and Neutrino Detector







Add links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Large Hadron Collider
(LHC)
Plan of the LHC experiments and the preaccelerators.
LHC experiments
ATLASA Toroidal LHC Apparatus
CMSCompact Muon Solenoid
LHCbLHC-beauty
ALICEA Large Ion Collider Experiment
TOTEMTotal Cross Section, Elastic Scattering and Diffraction Dissociation
LHCfLHC-forward
MoEDALMonopole and Exotics Detector At the LHC
FASERForwArd Search ExpeRiment
SNDScattering and Neutrino Detector
LHC preaccelerators
p and PbLinear accelerators for protons (Linac 4) and lead (Linac 3)
(not marked)Proton Synchrotron Booster
PSProton Synchrotron
SPSSuper Proton Synchrotron

The Scattering and Neutrino Detector (SND) at the Large Hadron Collider (LHC), CERN, is an experiment built for the detection of the collider neutrinos. The primary goal of SND is to measure the p+p --> +X  process and search for the feebly interacting particles. It will be operational from 2022, during the LHC-Run 3 (2022-2024). SND will be installed in an empty tunnel- TI18 that links the LHC and Super Proton Synchrotron, 480m away from the ATLAS experiment interaction point in the fast forward region and along the beam collision axis.[1][2][3][4][5]

In February 2020, the Search for Hidden Particle (SHiP) collaboration expressed its interest in neutrino-measurement to the LHC Council (LHCC). The letter of intent for SND was presented in August 2020.[6] Based on LHCC’s recommendation, the Letter of intent was followed by the Technical Design report presented in February 2021. The experiment was later approved in March 2021 by the CERN Research Board to be the ninth experiment at LHC.[1][7] In 2023, SND@LHC and FASER reported the first observation of collider neutrinos.[8][9][10]

Physics potential and goals[edit]

The SND will cover a wide range of physics, such as detecting all three neutrino flavors in the pseudorapidity (angular) range that has never been explored before.[3] Along with the FASERnu detector at LHC, it will be the first experiment to observe and study the collider neutrinos.[5] It will also search for Beyond Standard Model particles such as Feebly Interacting Particles and particles that could make up the dark matter.[6]

Physics with neutrinos[edit]

SND will primarily observe neutrinos in the pseudorapidity range of 7.2 to 8.6. It will detect the scattering properties of the neutrinos in this yet unexplored range and complement the observation range of FASERnu.[2][3][11] The neutrinos in this range come from the decay of heavy quarks such as charm decays (c → s +  : charm quark decaying into a strange quark and a W boson), and hence SND aims to give valuable insights into the physics of heavy quark production. The charmed-hadron production studies will also provide data to constrain the gluon parton distribution function in the low Bjorken-x region.[5][6] In its first operational run, i.e. the LHC's Run-3 between 2022 and 2025, SND is expected to detect and study about 2000 high-energy neutrinos.[5][11]

Physics with feebly interacting particles[edit]

The Feebly Interacting Particles (FIPs) are theorized to be produced in the proton-proton collisions. SND has the potential to detect two types of FIPs; stable FIPs by observing their scattering from the atoms (mostly protons) in the detector target section, and unstable FIPs which could decay inside the detector itself.[6] The light-dark matter particles hypothesized with scattering properties similar to the neutrinos, and which interact with the Standard Model particles through ‘portal mediators’, could also be possibly detected as FIPs,[12] although they will have to be separated from the neutrino scattering background. One basic criterion for such a separation would be to observe the number of inelastic and elastic collision events. Neutrinos usually scatter inelastically due to the high mass of their mediators (W and Z bosons). Thus more than the predicted number of elastic collisions will hint at light dark matter scattering events.[6][11]

See also[edit]

References[edit]

  1. ^ a b "CERN approves new LHC experiment". CERN. Retrieved 2021-07-28.
  • ^ a b "Collider neutrinos on the horizon". CERN Courier. 2021-06-02. Retrieved 2021-08-19.
  • ^ a b c "Designing the SND@LHC experiment". EP News. Retrieved 2021-08-19.
  • ^ "INSPIRE". inspirehep.net. Retrieved 2021-08-19.
  • ^ a b c d Pastore, A (December 2020). "Neutrino physics with the SHiP experiment at CERN". Journal of Physics: Conference Series. 1690: 012171. doi:10.1088/1742-6596/1690/1/012171. ISSN 1742-6588. S2CID 221931137.
  • ^ a b c d e Collaboration, S. N. D. (2020). Scattering and Neutrino Detector at the LHC. Letter of Intent. CERN. Geneva. The LHC experiments Committee, LHCC.
  • ^ "Greybook". greybook.cern.ch. Retrieved 2021-08-19.
  • ^ SND@LHC Collaboration; Albanese, R.; Alexandrov, A.; Alicante, F.; Anokhina, A.; Asada, T.; Battilana, C.; Bay, A.; Betancourt, C.; Biswas, R.; Blanco Castro, A.; Bogomilov, M.; Bonacorsi, D.; Bonivento, W. M.; Bordalo, P. (2023-07-19). "Observation of Collider Muon Neutrinos with the SND@LHC Experiment". Physical Review Letters. 131 (3): 031802. arXiv:2305.09383. doi:10.1103/PhysRevLett.131.031802.
  • ^ FASER Collaboration; Abreu, Henso; Anders, John; Antel, Claire; Ariga, Akitaka; Ariga, Tomoko; Atkinson, Jeremy; Bernlochner, Florian U.; Blesgen, Tobias; Boeckh, Tobias; Boyd, Jamie; Brenner, Lydia; Cadoux, Franck; Casper, David W.; Cavanagh, Charlotte (2023-07-19). "First Direct Observation of Collider Neutrinos with FASER at the LHC". Physical Review Letters. 131 (3): 031801. arXiv:2303.14185. doi:10.1103/PhysRevLett.131.031801.
  • ^ Worcester, Elizabeth (July 19, 2023). "The Dawn of Collider Neutrino Physics". Physics. 16: 113. Retrieved July 23, 2023.
  • ^ a b c Ahdida, C.; Albanese, R.; Alexandrov, A.; Andreini, M.; Anokhina, A.; Bay, A.; Bestmann, P.; Betancourt, C.; Bezshyiko, I. (2021). SND@LHC - Scattering and Neutrino Detector at the LHC. Technical proposal. CERN. Geneva. The LHC experiments Committee, LHCC.
  • ^ The SHiP collaboration; Ahdida, C.; Akmete, A.; Albanese, R.; Alexandrov, A.; Anokhina, A.; Aoki, S.; Arduini, G.; Atkin, E.; Azorskiy, N.; Back, J. J. (April 2021). "Sensitivity of the SHiP experiment to light dark matter". Journal of High Energy Physics. 2021 (4): 199. Bibcode:2021JHEP...04..199S. doi:10.1007/JHEP04(2021)199. hdl:10400.26/40350. ISSN 1029-8479. S2CID 228980760.
  • External links[edit]


    Retrieved from "https://en.wikipedia.org/w/index.php?title=Scattering_and_Neutrino_Detector&oldid=1193754424"

    Categories: 
    Particle experiments
    CERN experiments
    CERN
    Neutrino experiments
     



    This page was last edited on 5 January 2024, at 12:58 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki