Jump to content
 







Main menu
   


Navigation  



Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate
 




Contribute  



Help
Learn to edit
Community portal
Recent changes
Upload file
 








Search  

































Create account

Log in
 









Create account
 Log in
 




Pages for logged out editors learn more  



Contributions
Talk
 



















Contents

   



(Top)
 


1 Algorithm  



1.1  Choosing parameters  





1.2  Notation  





1.3  Key generation  





1.4  Signing  





1.5  Verifying  





1.6  Proof of correctness  





1.7  Key leakage from nonce reuse  





1.8  Security argument  







2 Short Schnorr signatures  





3 See also  





4 References  





5 External links  














Schnorr signature






Čeština
Deutsch
Français
Italiano
עברית
Polski
Português
Русский
Türkçe
 

Edit links
 









Article
Talk
 

















Read
Edit
View history
 








Tools
   


Actions  



Read
Edit
View history
 




General  



What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Wikidata item
 




Print/export  



Download as PDF
Printable version
 
















Appearance
   

 






From Wikipedia, the free encyclopedia
 


Incryptography, a Schnorr signature is a digital signature produced by the Schnorr signature algorithm that was described by Claus Schnorr. It is a digital signature scheme known for its simplicity, among the first whose security is based on the intractability of certain discrete logarithm problems. It is efficient and generates short signatures.[1] It was covered by U.S. patent 4,995,082 which expired in February 2010.

Algorithm

[edit]

Choosing parameters

[edit]

Notation

[edit]

In the following,

Key generation

[edit]

Signing

[edit]

To sign a message, :

The signature is the pair, .

Note that ; if , then the signature representation can fit into 64 bytes.

Verifying

[edit]

If then the signature is verified.

Proof of correctness

[edit]

It is relatively easy to see that if the signed message equals the verified message:

, and hence .

Public elements: , , , , , , . Private elements: , .

This shows only that a correctly signed message will verify correctly; many other properties are required for a secure signature algorithm.

Key leakage from nonce reuse

[edit]

Just as with the closely related signature algorithms DSA, ECDSA, and ElGamal, reusing the secret nonce value on two Schnorr signatures of different messages will allow observers to recover the private key.[2] In the case of Schnorr signatures, this simply requires subtracting values:

.

If but then can be simply isolated. In fact, even slight biases in the value or partial leakage of can reveal the private key, after collecting sufficiently many signatures and solving the hidden number problem.[2]

Security argument

[edit]

The signature scheme was constructed by applying the Fiat–Shamir transformation[3] to Schnorr's identification protocol.[4][5] Therefore, (as per Fiat and Shamir's arguments), it is secure if is modeled as a random oracle.

Its security can also be argued in the generic group model, under the assumption that is "random-prefix preimage resistant" and "random-prefix second-preimage resistant".[6] In particular, does not need to be collision resistant.

In 2012, Seurin[1] provided an exact proof of the Schnorr signature scheme. In particular, Seurin shows that the security proof using the forking lemma is the best possible result for any signature schemes based on one-way group homomorphisms including Schnorr-type signatures and the Guillou–Quisquater signature schemes. Namely, under the ROMDL assumption, any algebraic reduction must lose a factor in its time-to-success ratio, where is a function that remains close to 1 as long as " is noticeably smaller than 1", where is the probability of forging an error making at most queries to the random oracle.

Short Schnorr signatures

[edit]

The aforementioned process achieves a t-bit security level with 4t-bit signatures. For example, a 128-bit security level would require 512-bit (64-byte) signatures. The security is limited by discrete logarithm attacks on the group, which have a complexity of the square-root of the group size.

In Schnorr's original 1991 paper, it was suggested that since collision resistance in the hash is not required, then therefore shorter hash functions may be just as secure, and indeed recent developments suggest that a t-bit security level can be achieved with 3t-bit signatures.[6] Then, a 128-bit security level would require only 384-bit (48-byte) signatures, and this could be achieved by truncating the size of e until it is half the length of the s bitfield.

See also

[edit]

References

[edit]
  1. ^ a b Seurin, Yannick (2012-01-12). "On the Exact Security of Schnorr-Type Signatures in the Random Oracle Model". Cryptology ePrint Archive. International Association for Cryptologic Research. Retrieved 2023-02-06.
  • ^ a b Tibouchi, Mehdi (2017-11-13). "Attacks on Schnorr signatures with biased nonces" (PDF). ECC Workshop. Retrieved 2023-02-06.
  • ^ Fiat, Amos; Shamir, Adi (1987). "How to Prove Yourself: Practical Solutions to Identification and Signature Problems". In Andrew M. Odlyzko (ed.). Advances in Cryptology. Conference on the Theory and Application of Cryptographic Techniques. Proceedings of CRYPTO '86. Lecture Notes in Computer Science. Vol. 263. pp. 186–194. doi:10.1007/3-540-47721-7_12. ISBN 978-3-540-18047-0. S2CID 4838652.
  • ^ Schnorr, C. P. (1990). "Efficient Identification and Signatures for Smart Cards". In Gilles Brassard (ed.). Advances in Cryptology. Conference on the Theory and Application of Cryptographic Techniques. Proceedings of CRYPTO '89. Lecture Notes in Computer Science. Vol. 435. pp. 239–252. doi:10.1007/0-387-34805-0_22. ISBN 978-0-387-97317-3. S2CID 5526090.
  • ^ Schnorr, C. P. (1991). "Efficient signature generation by smart cards". Journal of Cryptology. 4 (3): 161–174. doi:10.1007/BF00196725. S2CID 10976365.
  • ^ a b Neven, Gregory; Smart, Nigel; Warinschi, Bogdan. "Hash Function Requirements for Schnorr Signatures". IBM Research. Retrieved 19 July 2012.
  • [edit]
    Retrieved from "https://en.wikipedia.org/w/index.php?title=Schnorr_signature&oldid=1227380630"

    Category: 
    Digital signature schemes
    Hidden categories: 
    Articles with short description
    Short description matches Wikidata
     



    This page was last edited on 5 June 2024, at 11:33 (UTC).

    Text is available under the Creative Commons Attribution-ShareAlike License 4.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.



    Privacy policy

    About Wikipedia

    Disclaimers

    Contact Wikipedia

    Code of Conduct

    Developers

    Statistics

    Cookie statement

    Mobile view



    Wikimedia Foundation
    Powered by MediaWiki